Curso Relâmpago de R

Objetivo

O objetivo desse curso é fazê-lo adquirir rapidamente certa familiaridade com o software R.

Ao final desse curso você deverá ter atingido dez metas, devendo ser capaz de:

- 1. saber que o R não é um "aplicativo" mas um ambiente de trabalho;
- 2. saber se o R é o software adequada para você;
- 3. iniciar, salvar e concluir uma sessão no R;
- 4. ler arquivos de dados tipo CSV;
- 5. realizar operações matemáticas simples necessárias para criação e transformação de variáveis;
- 6. obter estatísticas descritivas de variávies;
- 7. construir gráficos exploratórios simples de análise de dados;
- 8. construir modelos lineares clássicos;
- 9. realizar inferências gráficas e numéricas nos modelos lineares; e
- 10. conhecer as fontes para você continuar se desenvolvendo no R.

1. O Esquema R

O R **não é um "aplicativo"** que lhe possibilita através de uma interface gráfica amigável realizar algumas tarefas sem saber exatamente o que está fazendo.

O R é um ambiente de trabalho para realização de análises estatísticas.

Como software, suas características principais são:

- INTERFACE: o R é uma interface para análises de dados, criando um ambiente de trabalho.
- **INTERATIVIDADE:** essa interface é interativa, isto é, você digita comandos e obtem os resultados.
- **FUNCIONAL:** a linguagem **S**, a linguagem que se fala dentro do R, é uma *linguagem funcional*, isto é, todas as análises e ações são realizadas por *funções*.
- ORIENTAÇÃO PARA OBJETOS: a linguagem S é uma linguagem de programação orientada para objetos, isto é, todas as *entidades* no ambiente R (dados, análises, gráficos, funções) são efetivamente objetos.
- MODULAR: o R é composto por módulos, que são chamados de pacotes (packages). O pacote básico traz a funcionalidade necessária para as análises matemáticas e estatísticas mais usuais. Existem literalmente milhares de outros pacotes para realizar análises específicas nas mais diversas áreas do conhecimento científico.
- **COLABORATIVO:** o R é um esforço mundial de programação em código aberto.

Nesse ponto você já deve ter atingido a meta 1.

Se isso não aconteceu, re-leia o material acima e realize uma profunda meditação.

Se mesmo assim você não alcançou a meta 1, procure um amigo que entenda de computação para traduzir o que você leu acima. Nesse caso, o curso está deixando de ser relâmpago.

2. Filosofia de trabalho ou o R é para mim?

Do ponto de vista da análise de dados, o R tem uma filosofia que o diferencia radicalmente dos outros softwares estatísticos:

• ANALISAR DADOS É PROGRAMAR COM DADOS: toda a análise de dados deve ser pensada como a construção de programa que ao ser executado gera a análise esperada.

PORTANTO, reflita nos seguintes pontos antes de prosseguir:

O R não é para você!

Você pode ter certeza que o R não é para você se:

- Você não quer aprender uma linguagem e realizar análises utilizando comandos.
- Você acredita que análise estatística é um simples protocolo para obter alguns resultados numéricos.
- Você acredita que para cada situação ou conjunto de dados existe A análise estatística correta.
- Você não sabe o que é **análise estatística baseada em modelos** e não está nenhum pouco interessado em saber.

Não perca seu tempo com o R!

 Se você acredita que basta aprender algumas receitas no R para depois copiá-las quando quiser realizar as mesmas análises, sem entender realmente o que você está fazendo: NÃO PERCA SEU TEMPO COM O R, APRENDA UM SOFTWARE AMIGÁVEL.

Não se iluda com o R!

- Se você imagina que é possível "tolerar essa coisa de programação com dados" por um tempo, pois, um dia, alguém vai desenvolver uma interface amigável e aí você já conhecerá o R e tudo será mais fácil.
- Não se iluda!!! Alguém pode até desenvolver uma interface amigável (de fato, já existe pelo

menos uma). Mas a equipe de desenvolvedores do R não está interessada em "oficializar" interfaces amigáveis.

 O R não é um software comercial. Não há interesse em atrair usuários que não compartilhem da sua filosofia de trabalho.

Nesse ponto você já deve ter atingido a meta 2. Mas cuidado com o auto-engano!

3. Iniciando, Gravando e Concluindo

Nesse curso assumimos que você já tem o R instalado e funcionando no seu computador. Não será discutida a instalação, pois essa operação é análoga a instalação de qualquer software no sistema operacional que você trabalha. Para obter o R e informações de como instalá-lo, visite o site: http://www.r-project.org/ .

Para iniciar o R você deve:

- **No Ruindows:** realizar um clique duplo no ícone do R no seu "desktop" ou procurar o R na lista de programas instalados a partir do menu "Iniciar".
- No Linux: criar um diretório ou se dirigir a um diretório já criado e executar o comando "R".

Apesar das diferenças de interface devido a o sistema operacional, ao iniciar o R você deverá obter uma janela muito parecida com a seguinte janela:

```
R version 2.7.0 (2008-04-22)
Copyright (C) 2008 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R é um software livre e vem sem GARANTIA ALGUMA.
Você pode redistribuí-lo sob certas circunstâncias.
Digite 'license()' ou 'licence()' para detalhes de distribuição.
R é um projeto colaborativo com muitos contribuidores.
Digite 'contributors()' para obter mais informações e
'citation()' para saber como citar o R ou pacotes do R em publicações.
Digite 'demo()' para demonstrações, 'help()' para o sistema on-line de
ajuda,
ou 'help.start()' para abrir o sistema de ajuda em HTML no seu navegador.
Digite 'q()' para sair do R.
[Área de trabalho anterior carregada]
```

A Linha de Comando

O R é uma linguagem interativa, ou seja, que permite ao usuário enviar um comando por vez e receber o resultado¹⁾. Para isso, usamos a linha de comando, que tem o sinal ">" quando o R está pronto para receber um comando.

Os outros dois estados da linha de comando são o de execução e o de espera para a conlusão do comando. No modo de execução não é exibido nenhum sinal e não é possível digitar outro comando. Você só perceberá isso se der um comando que tenha um tempo de execução muito longo. Experimente o seguinte comando:

```
> for(i in 1:10000) prod(1:i)
>
```

O estado de espera ocorre quando o usuário envia um comando incompleto, o que é indicado por um sinal de "+":

> log(1 +) [1] 0 >

Na primeira linha, não fechamos os parênteses da função log e demos *enter*. O R responde com o sinal de espera (+), indicando que o comando está incompleto. Digitando o parêntese que falta e apertando a tecla *enter* novamente o R retorna o resultado do comando, precedido de um índice numérico.

Ao longo desse curso, os exemplos mostrados dentro do R (como o exemplo acima) são totalmente funcionais. Você deveria ser capaz de digitá-los no seu computador, mas os resultados apresentados pelo R nem sempre serão mostrados nos exemplos.

Para tirar o máximo proveito desse curso relâmpago, você deve repetir todos os comandos exemplificados e não ter medo de experimentar variações dos exemplos apresentados.

Primeiros Comandos

Se você voltar à mensagem inicial que o R apresenta, verá que ele já lhe ensina alguns comandos:

- <u>license</u>²⁾ detalha as condições de distribuição do R.
- <u>contributors</u> lista a equipe do *time-cerne* de desenvolvimento.
- citation ensina como citar o R em trabalhos acadêmicos.
- <u>demo</u> inicia uma sessão interativa de demonstração do R.
- <u>help</u> para obter uma página de ajuda on-line.
- <u>help.start</u> para iniciar um navegador de internet com as páginas de auxílio.
- \underline{q} é o comando para encerrar a sessão e sair do R (no inglês q = quit).

Comando mais utilizado no R: help

Da mesma forma que pessoas pouco letradas pensam que pessoas cultas possuem dicionário só para enfeitar a estante de livros e que raramente os utilizam, os iniciantes no R tendem a pensar que a função <u>help</u> é para iniciantes.

Ledo engano!! Até os maiores experts em R utilizam o comando <u>help</u> com frequência, pelo simples fato que a quantidade de funções e comandos no R é tão grande que é humanamente impossível alguém conhecer todos eles e com todos os seu detalhes.

Use e abuse da função <u>help</u>. Para obter ajuda da própria função utilize o comando:

```
> help( help )
```

Outros exemplos:

```
> # auxílio sobre o símbolo "*"
> help( "*" )
> # auxílio sobre a função "sin" = seno
> help( sin )
> # variante da função "help"
> ?sin
> # auxílio sobre os conjuntos de dados (datasets) que vêm com o R
> help( datasets )
```

Objetos no R

Como foi dito, no R tudo é considerado um objeto. Até mesmo as funções que você vem utilizando são objetos.

Para ver um objeto no R, basta digitar o seu **NOME**. O nome de uma função é o comando sem os parênteses:

> help > q > citation

No R é fácil criar objetos numéricos³:

```
> x = 2
> x
> y = 7
> y
> z = x * y
> z
> w = x - y
> w
```

Vejamos alguns exemplos com objetos vetoriais:

> k = c(1.3, -5, 6.7, 4.8)
> k
> x * k
> m = c(0, 1, 1, 0, 1, 1)
> m
> m * k

A Área de Trabalho

Você deve imaginar que ao iniciar uma sessão do R e criar uma série de objetos, você está fazendo isso numa ÁREA DE TRABALHO (**workspace**).

Para saber quais objetos você criou no seu workspace use a função:

> ls()

Para apagar os objetos indesejados, utilize a função <u>rm</u>, fornecendo os objetos que você deseja apagar:

> rm(x, y, z, w)
> ls()

É importante lembrar que ao criar os objetos, o R não grava automaticamente o workspace no seu disco. Fica tudo na memória do computador. Basta uma interrupção momentânea de energia e você perde tudo. Por isso, é importante lembrar de periodicamente gravar o seu workspace, principalmente nas sessões mais longas:

```
> # grava o seu workspace com o nome genérico: ".RData"
> save.image()
> # grava o seu workspace com o nome indicado
> save.image(file="minha sessao inicial de R.RData")
```

Lembre-se que na maioria dos sistemas operacionais, arquivos cujo o nome se inicia com um ponto (como ".RData") são arquivos ocultos!

Nesse ponto você deve ter alcançado a meta 3.

Inseguro? Experimente criar uma nova área de trabalho, criando variações das operações acima e gravando o workspace. Inicie uma nova sessão no workspace que foi gravado!

4. Lendo Dados para Dentro do R: Formato CSV

O R é um ambiente para análise de dados. Não é um ambiente para **digitação** ou **organização** dos seus dados.

O aplicativo mais utilizado para digitar e organizar os dados são as **planilhas eletrônicas**, como o Excell e assemelhados. As planilhas conseguem gravar os dados em vários formatos, além do formato nativo da planilha⁴⁾.

Formato CSV

No caso do R, o melhor é gravar os dados no formato CSV (CSV = *Comma-Separeted Values*).

O formato CSV consiste em uma única tabela (spreadsheet) da sua planilha eletrônica, onde os valores são gravados linha-a-linha, sendo que numa mesma linha os valores são separados por vírgulas.

O formato UNIVERSAL de tabela de dados para análise estatística é o seguinte:

- cada LINHA é uma observação,
- cada COLUNA é uma variável ou atributo que foi tomado em cada observação.

No formato CSV, cada linha será uma observação e as colunas serão separadas por vírgulas.

Lendo um Arquivo CSV

Como exemplo trabalharemos com um arquivo que apresenta três parcelas, cada uma em um "caxetal" diferente. As primeiras linhas desse arquivo formam a seguinte tabela:

local	parcela	arvore	fuste	сар	h	especie
chauas	1	1	1	210	80	Myrcia sulfiflora
chauas	1	3	1	170	80	Myrcia sulfiflora
chauas	1	4	1	720	70	Syagrus romanzoffianus
chauas	1	5	1	200	80	Tabebuia cassinoides
chauas	1	6	1	750	170	indet.1
chauas	1	7	1	320	80	Myrcia sulfiflora
chauas	1	8	1	480	160	Tabebuia cassinoides
chauas	1	9	1	240	140	Tabebuia cassinoides

Grave o arquivo no diretório que estiver trabalhando com o R: exemplo-caixeta.csv.

Esse arquivo pode ser visualizado em qualquer editor de textos, pois o formato CSV é um formato

texto:

"local","parcela","arvore","fuste","cap","h","especie"
"chauas",1,1,1,210,80,"Myrcia sulfiflora"
"chauas",1,3,1,170,80,"Myrcia sulfiflora"
"chauas",1,4,1,720,70,"Syagrus romanzoffianus"
"chauas",1,5,1,200,80,"Tabebuia cassinoides"
"chauas",1,6,1,750,170,"indet.1"
"chauas",1,7,1,320,80,"Myrcia sulfiflora"
"chauas",1,8,1,480,160,"Tabebuia cassinoides"
"chauas",1,9,1,240,140,"Tabebuia cassinoides"

Note nos seguintes pontos:

- A primeira linha do arquivo contem o nome das variáveis ou nome das colunas da tabela.
- Os valores de cada variável (coluna) estão seprados por vírgulas.
- As "palavras" estão envoltas em aspas duplas (").

Para ler esse arquivo no R, basta utilizar a função read.csv.

Cuidado!! Se você digitar simplesmente:

```
> read.csv(file="exemplo-caixeta.csv")
```

as linhas do arquivo aparecerão na tela mas não serão gravadas em nada.

É necessário gravar a leitura do arquivo num objeto:

> cax = read.csv(file="exemplo-caixeta.csv")

Agora se você digitar o nome do objeto:

> cax

o R lhe apresentará todas as 198 linhas de dados!!

Para visualizar apenas as primeiras linhas do dataframe (objeto de dados) use o comando head:

>	head(ca	ax)					
	local	parcela	arvore	fuste	сар	h	especie
1	chauas	1	1	1	210	80	Myrcia sulfiflora
2	chauas	1	3	1	170	80	Myrcia sulfiflora
3	chauas	1	4	1	720	70	Syagrus romanzoffianus
4	chauas	1	5	1	200	80	Tabebuia cassinoides
5	chauas	1	6	1	750	170	indet.1
6	chauas	1	7	1	320	80	Myrcia sulfiflora

Problema da Planilha ou do CSV

Um grande problema surge quando se utiliza uma planilha eletrônica onde o **separador decimal** também é a vírgula.

Nesse caso, o arquivo CSV será uma grande confusão, pois a vírgula não só delimitará cada coluna da tabela de dados como também indicará o separador decimal do números que não forem inteiros.

Dois aspectos devem ser considerados:

- PRIMEIRO: jamais digitar dados com marcador decimal (no Brasil a vírgula). Essa é uma regra importante, pois a maior parte dos erros de digitação envolvem a utilização do marcador decimal na definição dos números. Se você mediu o diâmetro de uma árvore em centímetros com uma casa decimal, anote os dados em milímetros.
- SEGUNDO: se a digitação com marcador decimal se tornou inevitável⁵⁾ e você utilizou a vírgula como marcador decimal, ao gravar o arquivo CSV, procure fazer com que a planilha utilize um outro símbolo para separação de valores, como por exemplo o ponto-e-vírgula (;). A maneira de fazer isso depende da planilha que você estiver utilizando.

O arquivo exemplo-caixeta-2.csv é um exemplo de arquivo CSV com ponto-e-vírgula como separação de valores. No R, esse arquivo deverá ser lidos com o argumento <u>sep</u> definindo o símbolo usado na separação de valores:

> cax2 = read.csv(file="exemplo-caixeta-2.csv",sep=";")

> head(cax2)

A página de auxílio da função <u>read.csv</u> detalha diferentes formas de leitura de dados que podem ser utilizadas no R.

5. Manipulando e Criando Variáveis

Entendendo um Data Frame no R

O comando head sempre apresenta as primeiras linhas da tabela de dados (data frame).

- As colunas da tabela (variáveis) são mostradas pelos nomes que estavam na primeira linha do arquivo CSV.
- As linhas da tabela (observações) são geralmente numeradas. Note que a primeira coluna de números não é uma variável! Ela indica cada linha do arquivo CSV, ou seja cada observação. No R, as linhas do data frame (observações) também devem ter nomes únicos. Se o usuário não os fornece, o R simplesmente os nomeia segundo a numeração da ordem em que os dados são lidos.

Se quisermos apenas uma variável (coluna) desse data frame, basta unir o nome do data frame (<u>cax</u>) ao nome da coluna desejada com o símbolo especial **"\$"**:

- > cax\$local
- > cax\$cap

Novas Variáveis no Data Frame

Novas variáveis (colunas) podem ser criadas também utilizando o símbolo \$. Por exemplo:

```
> # constante universal PI
> pi
[1] 3.141593
> # cálculo do DAP (cm) a partir do CAP (mm)
> cax$dap = (cax$cap/10) / pi
> # cálculo da área transversal (m2) a partir do DAP (cm)
> cax$g = (pi/4) * (cax$dap/100)^2
> # cálculo do volume cilíndrico a partir da área transv. e da altura (dm)
> cax$vol.cilindrico = cax$g * (cax$h/10)
>
> head(cax)
```

Note que:

- A palavra <u>pi</u> no R está reservada para representar a constante universal pi.
- Ao utilizar a expressão <u>cax\$dap</u> = estamos criando uma nova variável (coluna) no dataframe <u>cax</u> com o nome <u>dap</u>, cujos valores serão o resultado da expressão matemática apresentada após o sinal de igualdade. O mesmo acontece com as colunas <u>g</u> e <u>vol.cilindrico</u>.

Não há como **apagar** as variáveis de dentro de um data frame! É necessário criar um novo data frame apenas com as variáveis desejadas, mas isso não é assunto para um curso relâmpago!

As metas 4 e 5 foram atingidas?

Se você está inseguro, repita todos os passos dos itens 4 e 5 com os seus próprios dados!

6. Descrevendo as Observações

Contagens

A forma mais simples de descrever quantitativamente observações é agrupá-las em categorias e contar quantas observações pertence a cada categoria.

No R a forma mais direta de obter contagens (frequências) é através da função <u>table</u>. Tomando como exemplo o dataframe <u>cax</u>, podemos nos perguntar quantas árvores foram observadas em cada caixetal (variável <u>local</u>):

```
> table(cax$local)
```

Também é interessante saber o número de árvores por <u>local</u> e <u>parcela</u>:

```
> table(cax$local, cax$parcela)
```

Observação: note que os **argumentos** de uma função são separados por vírgula (,)

Podemos verificar a abundância de cada espécie (<u>especie</u>) em cada caixetal (<u>local</u>):

```
> table( cax$especie, cax$local )
```

Gráficos de Contagem

Dados de contagem também podem ser apresentado na forma de gráficos de barra:

```
> barplot( table(cax$local) )
```

Observação: veja que no R você pode construir um comando chamando função dentro de função em vários níveis. No exemplo acima, o resultado da função <u>table</u> foi colocado como argumento para a função <u>barplot</u>.

Formas alternativas de construir esses gráficos são:

```
> barplot( table(cax$fuste) )
```

> plot(table(cax\$fuste))

Um gráfico de abundância das espécies presentes nos três caixetais:

```
> # Define margens do gráfico, aumentando a esquerda
> par( mar=c(5,10,4,2) )
> # Gráfico horizontal c/ nomes horizontais
> barplot(sort(table(cax$especie)), horiz=T, las=1, xlab="Abundância")
> # Fecha a janela gráfica
> dev.off()
```

Observação: no exemplo acima temos um comando com três funções *aninhadas* (<u>table</u> dentro de <u>sort</u>, que está dentro de <u>barplot</u>).

Embora seja convencional apresentar o gráfico de abundância com barras, um gráfico na forma de pontos é de construção mais simples, sendo mais informativo:

```
> dotchart( sort(table(cax$especie)), xlab="Abundância" )
```

Sumário de Variáveis

A função <u>summary</u> retorna uma conjunto de estatísticas descritivas (**sumário**) de todas as variáveis de um data frame de acordo com o seu tipo:

```
> summary(cax)
```

Note que para as variáveis <u>parcela</u> e <u>arvore</u> esse sumário não faz sentido, uma vez que elas são simples variáveis indentificadoras da parcela e da árvore⁶.

Mas o sumário também pode ser obtida para cada variável individualmente:

- > summary(cax\$dap)
- > summary(cax\$h)
- > summary(cax\$especie)

Estatísticas Descritivas

O R também possui funções para as diversas estatísticas descritivas de variáveis quantitativas:

Estatística Descritiva	Nome da Função
Média	mean
Mediana	median
Mínimo	min
Máximo	max
Amplitude de variação	range
Quartis e quantis	quantile
Distância Interquartil (Inter Quarter Range)	IQR
Variância	var
Desvio padrão (Standard Deviation)	sd
Desvio abosluto mediano (Mean Absolut Deviation)	mad

```
> mean(cax$dap)
```

- > mdap = mean(cax\$dap)
- > mdap
- >
- > median(cax\$dap)
- > min(cax\$dap)
- > max(cax\$dap)
- > range(cax\$fuste)

- > quantile(cax\$h)
- > IQR(cax\$h)
- > var(cax\$h)
- > sd(cax\$h)

7. Gráficos Exploratórios

O R é um ambiente de trabalho onde a análise gráfica de dados é de fácil execução. Entretanto, é necessário diferenciar dois tipos de gráficos:

- Gráficos para análise de dados: são gráficos simples que permitam visualizar o mais claro possível padrões presentes nos dados. Esses gráficos são construídos rapidamente no R e as formas de construí-los permitem inúmeras interações com os elementos de informação nos gráficos.
- Gráficos prontos para apresentação: são construídos para inclusão em documentos e trabalhos técnicos e científicos, como forma de ilustrar resultados e conclusões. Gráficos de apresentação são mais elaborados. Sua construção no R exige mais tempo e conhecimento, pois o R não oferece recursos interativos para manipular os elementos pictoriais dos gráficos.

Vejamos alguns gráficos para análise exploratória de dados.

Histogramas

Histogramas são gráficos tradicionais na análise exploratória de dados, pois nos apresentam um gráfico da distribuição de probabilidade da variável analisada.

```
> hist( cax$dap )
> hist( cax$h, col="red" )
> hist( cax$h, col="blue", probability=T )
```

Uma possibilidade de gráfico que o R permite é adicionar uma curva de **densidade probabilística** ao histograma, para melhor estudar o comportamento da variável.

```
> hist( cax$dap, probability=T , col="blue")
> lines( density(cax$dap) , col="red")
```

Um gráfico tipo texto análogo ao histograma é o tradicional gráfico de ramo-folha da análise exploratória de dados:

```
> stem(cax$dap)
> stem(cax$h)
```

Boxplot

Os boxplots são gráficos de uso frequente para se estudar o comportamento das variáveis. Sua construção no R é direta e simples:

```
> boxplot( cax$dap )
> boxplot( dap ~ local, data=cax )
```

Transformar um gráfico de análise em um gráfico de apresentação demanda o conhecimento sobre as ferramentas gráficas presentes no R:

```
> # Altera as margens da janela gráfica
> par( mar=c(5,10,4,2) )
> # Boxplot
> boxplot( dap ~ especie, data=cax , horizontal=T, las=1)
> # Fecha a janela gráfica
> dev.off()
```

Gráfico de Dispersão

A função <u>plot</u> é a função básica para construção de gráficos de dispersão para duas variáveis quantitativas:

```
> plot( cax$dap, cax$h )
> scatter.smooth( cax$dap, cax$h )
```

Você se sente seguro em relação às metas 6 e 7?

Não? Então utilize os seus próprios dados para calcular estatísticas descritivas e construir gráficos exploratórios .

8. Modelos Lineares

Utilizaremos alguns modelos lineares para estudar a relação entre o DAP (variável <u>dap</u>) e a altura total (variável <u>h</u>) das árvores dos caxetais.

A função <u>lm</u> (*linear model*) é a função utilizada para **construir** um modelo linear. O primeiro passo é construir um modelo linear gravando-o num objeto na área de trabalho.

> hipso1 = lm(formula = h ~ dap, data=cax)

> hipso1 = lm(h ~ dap, data=cax)

O primeiro argumento da função \underline{lm} é uma **fórmula estatística** (<u>formula = h ~ dap</u>) que descreve a variável <u>h</u> como variável resposta e a variável <u>dap</u> como variável preditora. Ela deve ser lida da seguinte forma: **modele** <u>h</u> **como uma função linear de** <u>dap</u>.

O segundo argumento (<u>data=cax</u>) define que as variáveis da fórmula estão no data frame <u>cax</u>.

Vejamos o objeto hipsol:

> hipsol

Mas que decepção!! O R não fez nada?

9. Inferência sobre Modelos Lineares

O R fez muita coisa! Ele construiu um modelo linear e o gravou no objeto <u>hipso1</u>. A questão agora é o que você deseja saber desse objeto que é um modelo linear?

O primeiro interesse é analisar o comportamento dos resíduos do modelo linear, para verificar se o modelo é apropriado aos dados. Para isso basta utilizar a função <u>plot</u> com o objeto <u>hipsol</u>.

```
> plot( hipso1 )
```

O R entra num modo interativo diferente, apresentando sequencialmente, à medida que você tecle <Return>, um gráfico diferente que lhe permite avaliar o comportamento dos resíduos do modelo. Esses gráficos são os gráficos necessários para se verificar as pressuposições básicas do modelo linear clássico.

E para se fazer inferência sobre as estimativas dos coeficientes de regressão e sobre a qualidade do ajuste do modelo? Se utiliza as funções <u>summary</u> e <u>anova</u>:

```
> summary( hipsol )
> anova( hipsol )
```

Cada Modelo um Objeto

Você pode ajustar quantos modelos você desejar para estudar a mesma relação.

Podemos considerar que a relação entre DAP e altura é linear na escala logarítmica, assim um modelo apropriado seria:

```
> hipso2 = lm( log(h) ~ log(dap) , data=cax)
> plot(hipso2)
```

> summary(hipso2)

Ou então podemos verificar o modelo conhecido na Mensuração Florestal como Modelo Schumacher:

> hipso3 = lm(log(h) ~ I(1/dap) , data=cax)
> plot(hipso3)
> summary(hipso3)

Alguém aprecia parábolas ?

```
> hipso4 = lm( h ~ dap + I(dap^2) , data=cax)
> plot(hipso4)
> summary(hipso4)
```

Como podemos visualizar todos esses modelos junto com a relação DAP - altura ?

```
> scatter.smooth( cax$dap, cax$h)
> hipso1
> curve( 40.182 + 5.218*x, 0, 26, col="blue", add=T )
> hipso2
> curve( exp( 3.2031 + 0.5574*log(x) ), 0, 26, col="red", add=T )
> hipso3
> curve( exp( 4.639 - 1.871/x ), 0, 26, col="darkgreen", add=T )
> hipso4
> curve( 10.4109 + 11.1879*x - 0.2325*x^2, 0, 26, col="orange", add=T )
```

A abordagem mais apropriada é consideramos que cada caxetal talvez tenha uma relação altura-DAP diferente:

> hipso.plus = lm(h ~ dap * local, data=cax)
> plot(hipso.plus)
> summary(hipso.plus)

As metas 8 e 9 foram alcançadas? Não? Construa mais modelos com os seus próprios dados.

10. Para onde ir a partir daqui?

Bem! Chegamos a nossa meta final: as fontes para continuar se desenvolvendo no R.

- No site do projeto R, você encontrará também os manuais básicos que são as referências oficiais para o R:
 - An Introduction to R
 - The R language definition
 - Writing R Extensions
 - R Data Import/Export
 - R Installation and Administration
 - R Internals
 - $\circ\,$ The R Reference Index
- Os livros de John M. Chambers também são referências básicas para o R:
 - Chambers, J.M. 2008 **Software for Data Analysis: Programming with R**. New York: Springer.
 - Chambers, J.M. 2004 **Programming with Data: A Guide to the S Language**. New YOrk: Springer.
- Um livro de R escrito para ecologistas:
 - Crawley, Michael J. 2007. **The R Book**. New York: John Wiley.
- Existe muitos sites onde você poderá aprender mais sobre o R, basta fazer uma busca simples na internet. Dois sites **em português** que você pode continuar aprendendo o R são:
 - Uso da Linguagem R e
 - Uso da Linguagem R para Análise de Dados Ecológicos.

Embora ambos sejam semelhantes no conteúdo, o segundo site é mais didático e está mais atualizado.

Essa lista está longe de ser exaustiva!! Existem muitos outros recursos para aprender o R, essas são apenas algumas dicas iniciais.

Dez metas alcançadas? Cada meta é um passo. Todo caminho se percorre passo a passo. Continue caminhando! Be an useR ! Be happy !

Autor

João Luís Ferreira Batista

Laboratório de Mensuração e Biometria Florestal

In Silva, Arbores ... - http://insilvaarbores.com.br/dokuwiki/

Centro de Métodos Quantitativos Departamento de Ciências Florestais Escola Superior de Agricultura "Luiz de Queiroz" **UNIVERSIDADE DE SÃO PAULO**

1)

2)

é possível também de executar um lote de comandos, mas neste wiki trabalharemos apenas com o modo interativo.

Note que para executar o comando é necessário digitar o nome da função seguido de parênteses: license()

3)

Nota: a maioria dos comandos nesse curso são mostrados **SEM** os resultados apresentados pelo R

No Excell, o formato nativo é o XLS

5)

Você vai se arrepender disso depois!!

Embora codificadas como números essas variáveis são variáveis nominais

From:

http://insilvaarbores.com.br/dokuwiki/ - In Silva, Arbores ...

Permanent link:

 $http://insilvaarbores.com.br/dokuwiki/doku.php?id=pt:cursos_online:r_relampago:start&rev=166077245$

Last update: 2022/08/17 21:40

