LCF0510 Inventário Florestal

Exame Parcial 3 — 20/12/2021

Nathalia Lima Locaspi – 9880468

- 1) Para encontrar a estimativa média com o erro amostral necessitamos de outros valores, sendo eles:
 - Média dos dados (mu);
 - Variância (Var);
 - Tamanho da amostra (n);
 - Número de parcelas (N);
 - Correção para população finita (Cor.)
 - Variância da média (Var(mu));

$$V(\mu) = \frac{\sigma^2}{n} =$$

• Estatística (t).

Cabe ressaltar que possuem informações em comuns, como:

- N = Infinito;
- n = 40
- Cor.(1-n/N) = 1
- T (40 e 95 %) = 2,023

Assim, segue na tabela abaixo os valores encontrados.

	Número de Fustes	Área Basal	Volume	DAP médio	Altura média	Altura média dominantes	DAP médio quadrático
Média	1571,89	23,72	227,51	15,63	22,06	23,61	15,01
Variância	39847,94	21,49	7695,10	6,86	27,26	39,47	2,03
Estimativa da variância da média	996,20	0,54	192,38	0,17	0,68	0,99	0,05
Intevalo de conf. 95%	63,85	1,48	28,06	0,84	1,67	2,01	0,46

Por fim a estimativa da média será igual a Média ± Erro Amostral, na qual o erro amostral igual ao t vezes a raiz da Variância da Média, como podemos ver abaixo.

	Número ((n. fusto	de Fustes es ha-1)	Área Basal	(m²ha-1)	Volume	(m³ha-1)	DAP méd	dio (cm)	Altura m	édia (m)	Altura dominar		DAP n quadráti	
Estimativa da média	1571,89	63,85	23,72	1,48	227,51	28,06	15,63	0,84	22,06	1,67	23,61	2,01	15,01	0,46

<u>Observação</u>

Para encontrar os valores de "Intervalo de Conf. 95%" e "Estimativa da média", utilizei as seguintes fórmulas:

$$I = \sqrt{V(\mu)} * t_{(40_1)} = E \quad \mu e = \mu \pm I = .$$

2) Para realizar este cálculo temos que encontrar o valor de V%, sendo a razão do desvio padrão com a média, multiplicado por 100. Para poder calcular o tamanho da amostra, n*. Segue as fórmulas utilizadas e os resultados:

$$V\% = \frac{\sigma}{\mu} * 100 = e n* = \frac{t(40-1)^2 * V\%^2}{E^2\%}$$

Coeficiente de variação amostral	38,56
Erro amostral aceitável	5
Número de amostras corrigido	243,37

Para garantir que esse é o valor real, realizamos a Iteração até o valor se estabilizar, assim temos o novo valor de t (da estatística) é igual a 1,96. E quando realizamos as contas temos n*= 228,44, então o número de amostras é de 229.

3) Para realizar a estratificação da floresta, separei os talhões em decorrência das espécies (*E. grandis* e *E. grandis* x *E. urophylla*) e da forma de manejo (Reforma e Condução). Assim, teremos:

Estrato A - E. grandis em reforma, com 97,1 m²;

Estrato B - E. grandis em condução, com 244.82 m²;

Estrato C - E. grandis x E. urophylla em reforma, com 212,84 m².

Abaixo podemos ver a separação dos talhões e suas áreas totais.

talhao	idade	area (m²)	rotacao	espacame	especie	manejo	tipo.plantio
11	3,334247	26,06	1	330X180	E. grandis	REFORMA	clonal
30	2,761644	44,7	1	330x220	E. grandis	REFORMA	clonal
31	2,756164	26,34	1	330x220	E. grandis	REFORMA	clonal
		97,1					
15	6,041096	23,4	2	300x200	E. grandis	CONDUÇAO	clonal
16	6,183562	28,05	2	300x200	E. grandis	CONDUÇAO	clonal
17	6,186301	36,55	2	300x200	E. grandis	CONDUÇAO	clonal
18	6,230137	54,47	2	300x200	E. grandis	CONDUÇAO	clonal
19	6,178082	46,87	2	300x200	E. grandis	CONDUÇAO	clonal
27	5,852055	55,48	2	300x180	E. grandis	CONDUÇAO	seminal
		244,82					
12	3,323288	22,41	1	330X180	E. grandis x E. urophylla	REFORMA	clonal
13	3,328767	31,05	1	330X180	E. grandis x E. urophylla	REFORMA	clonal
26	3,350685	27,87	1	330X180	E. grandis x E. urophylla	REFORMA	clonal
28	3,145205	51,42	1	330X180	E. grandis x E. urophylla	REFORMA	clonal
29	3,106849	80,09	1	330X180	E. grandis x E. urophylla	REFORMA	clonal
		212,84					

4) Para encontrar a estimativa de produção volumétrica, tivemos que encontrar a variância de cada estrato, assim dentro dos estratos separados acima calculamos a média, variância, a estimativa da variância da média, o total do

estrato e sua variância, onde a fórmula utilizada nesses dois últimos pontos citados, são:

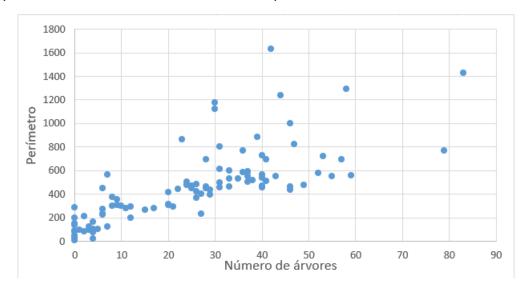
 $\tau a = AA * \mu a = E Var(\tau a) = AA^2 * V(\mu a) =$, na qual AA é a área total, logo temos como resultados dos estratos, os valores abaixo.

Estrato	Α	В	С
Média	137,78	322,78	167,40
Variância	298,89	1356,75	243,77
Área total	97,1	244,8	212,8
Número de parcelas	8	17	15
Estimativa da variância da média	37,36	79,81	16,25
Total do estrato	13378,34	79022,16	35629,75
Variância do total	352261,88	4783502,61	736201,63

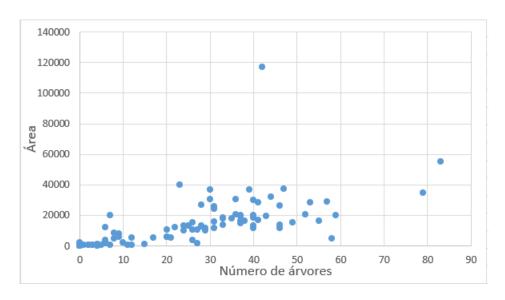
Posteriormente realizei os mesmos cálculos dos exercícios anteriores para encontrar o valor total da floresta, resultando em:

Floresta						
Total 128030,25						
Variância 5871966,12						
Intervalo de conf.	Intervalo de conf. 4902,16					
Estimador (m³)	128030	4902,16				

Assim estima-se que a produção fique entre 128030,25 e 4902,16.


5) Para compararmos as duas questões tive que multiplicar o valor da estimativa e o erro amostral do exercício 1 pela área total da floresta. E como podemos ver abaixo, quando estratificamos a nossa área podemos ter um resultado mais certeiro, pois, a produtividade é maior e principalmente o erro amostral é menor, indicando que essa é a maneira mais assertiva.

	Exercício 1	Exercício 4	Diferença
Estimativa prod	126214,2439	128030,2533	-1816,01
Erro amostral	15566,04058	4902,161936	10663,88


6) Para encontrarmos o número total das árvores, calculei a estimativa da média de árvores por quadra, sempre a 95% de confiança. Posteriormente, multipliquei o número de quadras pela estimativa média, resultando na estimativa total, variando de 10121,9 a 1560,81 árvores.

Média	24,39		
Variância	359,35		
Estimativa da variância da média	3,59		
Intevalo de conf. 95%	3,	76	
Estimativa da média	24,39	3,76098	
Estimativa do total	10121,9	1560,81	

7) Para melhor visualização do tipo de medida auxiliar, fiz dois gráficos de dispersão do Perímetro e da Área, como podemos ver abaixo:

Correlação: r = 0,765267

Correlação: r = 0,639798

Analisando ambos os gráficos, escolheria o do Perímetro, pois apresenta uma maior correlação com o número de árvores, logo se precisássemos encontrar o número de arvores através do perímetro teríamos uma maior precisão.

8) Para termos o número total de árvore, calculamos – os nos baseando no estimador de regressão, onde o obtemos pelo cálculo do beta, também calculei a média de X (Perímetro) e Y (Número de árvore).

Média de x	449,41
Média de y	24,39
Beta	0,000138

No decorrer dos cálculos, tive que encontrar diversos valores, como:

- Número total das árvores $\tau y = N * \mu y + \beta(\tau x N\mu x)$
- Variância populacional de y
- Variancia da média de y $Var(\mu l) = \frac{\sigma l^2}{n} * (1 \frac{n}{N})$
- Variância do total $Var(\tau l) = N^2 * Var(\mu l)$
- Intervalo de confiança de 95% $I = \sqrt{Var(\tau l)} * t_{(100_1)}$
- Estimativa do total

Por fim, cheguei nos valores do total das árvores de 10820,91 e 117,06. Podemos analisar os valores na tabela abaixo.

Número de árvores total	10820,91		
Variância pop. de y	2,66		
Variância da média de y	0,02		
Variância do total	3481,52		
Intevalo de conf. 95%	117,06		
Estimativa do total	10820,91	117,0647	

9)

10) Como não conseguir fazer a questão 9, podemos entender que quanto mais detalhes e variações usamos nos cálculos, menor é o erro amostral, ou seja, melhor são os resultados, tenho certeza de que na questão 9, por termos que estratificar, teríamos melhor resultados, justamente por esse motivo.