LCF0510 Inventário Florestal

Exame 1 | 08/11/2021

Estudante: Lucas Gonçalves Ferreira (10268620)

A tabela abaixo apresenta os dados referentes a parcelas de $540 m^2$ de um inventário florestal em floresta de eucalipto com 510ha. Os dados de volume (em m^3) se referem ao volume comercial de madeira encontrado na parcela.

Estrato	Volume Comercial (m³)	
A	6,8334	
A	9,0825	
A	9,6397	
A	9,4942	
A	8,5781	
A	10,1298	
A	10,1892	
A	7,5273	
В	16,8959	
В	17,2635	
В	17,3733	
В	15,9948	
В	18,8702	

QUESTÃO 1. Analise os dados ignorando a informação de estrato tomando o método de amostragem como amostragem aleatória simples em toda a floresta. Considere que a floresta é grande o suficiente para se ignorar a correção para populações finitas. Encontre:

A) O volume comercial médio da floresta em m³/ha, com seu respectivo intervalo de confiança de 95%.

O volume comercial médio da floresta, em m³/ha é de **224,89m³/ha**, com intervalo de confiança (IC=95%) de **21,74%**.

O volume comercial médio da floresta foi calculado através da média do volume comercial de todas as parcelas amostradas dividida pelo tamanho das parcelas, de 540m², ou 0,054ha. Assim, obtém-se o valor de 224,89m³/ha para o volume comercial médio da floresta.

O intervalo de confiança foi calculado a partir do a variância das parcelas amostradas e posterior cálculo do coeficiente de variação (V%), tal que $V\% = \frac{\sqrt{Var}}{\mu} \times 100$. Com base no V%, foi calculada a variância da média dividindo-se V% pelo número (n) de amostras e o erro padrão da média obtido pela raiz quadrada da variância da média. Esses resultados estão reunidos na tabela ao fim desta questão.

Considerando apenas a cauda direita da distribuição, foi calculada a estatística t para IC=95% e sua multiplicação pelo erro padrão da média resultou no intervalo de confiança absoluto de 2,64, que representa 21,74% do volume comercial médio da amostra.

B) O tamanho da amostra necessário para um erro amostral de 5%.

Para chegar ao tamanho de amostra necessário para erro amostral correspondente a 5%, foi utilizada a formula iterativa, como consta abaixo. Partindo-se de amostra (n*) de 13 e estatística-t de 2,18, calculou-se novo tamanho de amostra (n*) com estatística-t de 1,97. O processo foi repetido resultando num tamanho de amostra ideal de 197.

$$n^{\circ} = \frac{N \times (t_{\alpha;n-1} \times V\%)^{2}}{N \times E_{\%}^{2} + (t_{\alpha;n-1} \times V\%)^{2}}$$

A tabela abaixo resume os resultados obtidos.

	Amostragem	
	Aleatória Simples	
Erro Aceitável (%)	5	
Vol. Comerc. Méd. por Parcela (m³)	12,14	
Volume Comercial Médio (m³/ha)	224,89	
Variância	19,08	
V%	35,97	
n	13	
Variância da Média	1,47	
Erro Padrão da Média	1,21	
t-stat	2,18	
Interv. Conf. 95%	2,64	
Interv. Conf. 95% (%)	21,74	
N	9444	t-stat
n*	13	2,18
n*	240	1,97
n*	197	1,97
n*	197	1,97

QUESTÃO 2. Considerando que a área dos estratos são: Estrato A: 321*ha*; Estrato B: 189*ha*; analise os dados pelo método da amostragem estratificada com amostragem aleatória simples nos estratos.

Encontre:

A) O volume comercial médio da floresta em m³/ha, com seu respectivo intervalo de confianca de 95%.

O volume comercial médio da floresta foi calculado em 222,72m³/ha com intervalo de confiança (IC=95%) de 6,04%. Para chegar a esses valores, considerando a amostragem estratificada em área de 510ha que contou com 8 parcelas de 540m² no estrato A e 5 parcelas no estrato B, foi primeiro calculada a quantidade total de parcelas que cabem em toda a área da floresta. A divisão das áreas de cada estrato (321ha e 189ha) pelo tamanho de uma única parcela (540m²) em ha resultou em estratos de tamanho (N) de 5944 e 6500, respectivamente, e de 9444 no total.

Foi também calculada a média e variância do volume comercial nas amostras dos dois estratos. A média obtida para cada estrato, quando multiplicada pelo tamanho total (N) do estrato, resulta então no volume total do estrato (tau). A soma dos dois estratos resulta no volume comercial total na floresta. A partir da divisão de *tau* por N da floresta, obtém-se o volume comercial médio por parcela da floresta de 12,03m³, que possui 0,054ha. Assim, o volume comercial médio da floresta é de 222,72m³/ha.

Para o cálculo do intervalo de confiança (IC=95%), primeiramente a variância nos estratos foi calculada dividindo-se a variância da amostra pelo tamanho da amostra e multiplicando o resultado por N². A soma da variância dos dois estratos resulta na variância da floresta. A variância da média, por sua vez, é obtida dividindo-se a variância do estrato (ou da floresta) por seu tamanho N².

Finalmente, o tamanho efetivo de amostra é calculado a partir da seguinte fórmula:

$$n_E = \frac{\left(\sum a \cdot S^2\right)^2}{\sum (a \cdot S^2)/(n-1)} = \frac{(9.18 * 10^6)^2}{7.84 * 10^{12}} \approx 10$$

Para esse tamanho de amostra, a estatística-t é 2,26. Esse valor multiplicado pela raiz quadrada da variância da média da floresta resulta em um IC (95%) de 0,73, ou 6,04% em relação ao volume médio por parcela da floresta.

	Amostragem Estratificada		
	A	В	Floresta
Área do Estrato em ha	321	189	
Área das Parcelas em ha	0,054	0,054	
Tamanho da Amostra (n)	8	5	
Variância da Amostra (S²)	1,48	1,08	
Vol. Comercial Méd. em m³	8,93	17,28	
Índice dos Estratos (a)	4411108	2446500	
Tamanho do Estrato (N)	5944	3500	9444
Total do Estrato (tau)	53109,30	60478,39	113587,69
Vol. Méd. da Floresta em m³	8,93	17,28	12,03
Média da Floresta em m³/ha	$165,\!45$	319,99	222,72
Variância do Estrato	6535561	2656403	9191963,70
Variância da Média	0,26	0,75	0,103
$\mathrm{a} \cdot \mathrm{S}^{\scriptscriptstyle 2}$	6,53E+06	2,65E+06	9,18E+06
$(a \cdot S^2)^2/n-1$	6,09E+12	1,76E+12	7,84E+12
nE			10
t-stat			2,26
IC 95%			0,73
IC 95% (%)			6,04

B) O tamanho da amostra necessário para um erro amostral de 5%, realizando alocação proporcional das parcelas nos estratos.

Para calcular o tamanho da amostra a fim de se obter um erro amostral (E%) de 5, é necessário que se calcule a proporção de cada estrato, que é dada pela razão do tamanho de cada estrato (N) pelo tamanho da floresta. Utilizando o coeficiente de variação (V%) calculado para cada estrato h, obtém-se n* pela seguinte fórmula iterativa:

$$n^{\circ} = \frac{\sum N_h^2 \cdot V\%_h^2 / W_h}{N^2 \cdot E_{\%}^2 / t^2 + \sum N_h V\%_h^2}$$

Dessa, forma obteve-se um $\underline{n^*}$ de 23 parcelas amostradas no total. Quando divididas de acordo com a proporção da área de cada estrato na floresta, tem-se $\underline{14}$ parcelas do estrato A e 9 parcelas do estrato B.

A tabela abaixo resume os resultados obtidos:

	A	В	Floresta	
Tamanho do Estrato (N)	5944	3500	9444	
Proporção da Floresta	0,63	0,37	1,00	
V%	13,61	6,03		
N^2 . $V\%^2$ / W	10406851848	1200350099	1,16E+10	
$N \cdot V\%^2$	1101902	127096	1228998	t-stat
n*			27	2,26
n*			22	2,06
n*			23	2,08
n*	14	9	23	2,07

QUESTÃO 3. Calcule a seguinte razão:

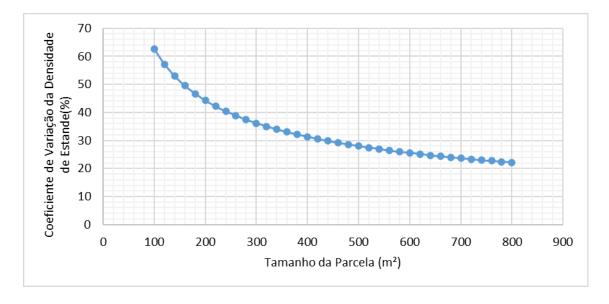
$$rac{Variância da Média da Amostragem Estratificada}{Variância da Média da Amostragem Aleatória Simples} imes 100$$

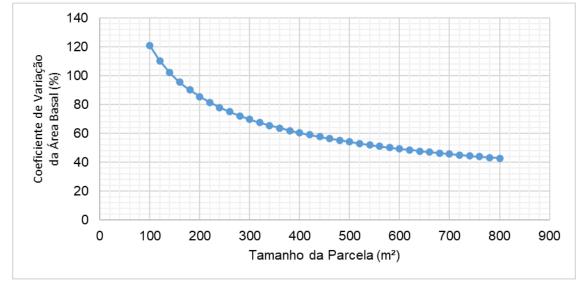
O que pode ser dito a respeito da eficiência da estratificação com base na razão calculada? Explique.

$$\frac{0,103}{1.47} \times 100 = 0,0702$$

Com base na razão calculada, pode-se dizer que valor obtido para a variância da média na amostragem estratificada representa apenas 7,02% da variância obtida a partir da amostragem aleatória simples. Isso indica que amostragem estratificada possibilita obter muitas vezes mais precisos a partir de um mesmo número de amostras.

QUESTÃO 4. Levantamento piloto em floresta ombrófila com parcelas de 500m², apresentou coeficiente de variação de 54 % para a área basal e de 28 % para a densidade de estande (número de árvores por hectare). Utilizando o método gráfico de Freese, encontre o tamanho adequado de parcela para esses dois atributos.


	Densidade	Área Basal
V%*	28	54
T^*	500	500


Com base no tamanho de parcelas (T*) utilizado e nos coeficientes de variação (V%*) para densidade de estande e área basal obtidos a partir do levantamento, foi

utilizada a fórmula de Freese (conforme descrita abaixo) para estimar os coeficientes de variação (V%) que poderiam ser resultantes de outros tamanhos de parcela (T).

$$V\% = V\%^{\circ} \times \sqrt{T^{\circ}/T}$$

O cálculo acima – utilizando valores de T que variaram de 20 em $20 m^2$, de 100 até $800 m^2$ – resultou nas seguintes curvas:

A tabela abaixo reúne os valores obtidos para cada ponto da curva.

T	V% (Dens.)	V% (A. Basal)
100	63	121
120	57	110
140	53	102
160	49	95
180	47	90
200	44	85
220	42	81
240	40	78
260	39	75
280	37	72
300	36	70
320	35	68
340	34	65
360	33	64
380	32	62
400	31	60
420	31	59
440	30	58
460	29	56
480	29	55
500	28	54
520	27	5 3
540	27	52
560	26	51
580	26	50
600	26	49
620	25	48
640	25	48
660	24	47
680	24	46
700	24	46
720	23	45
740	23	44
760	23	44
780	22	43
800	22	43

Como é possível concluir a partir da análise gráfica, o valor ótimo para o tamanho das parcelas, considerando tanto a densidade de estande quanto a área basal, é de <u>entre 200 e 300m²</u>, uma vez que é nessa faixa que há uma inflexão de ambas as curvas.