LCF0510 - Inventário Florestal

Exame 2 - 08/11/2021

Estudante: Stéphano Mikhael de Sousa (10318987)

QUESTÃO 1:

A) Para a obter o volume comercial médio em m³/ha e seu intervalo de confiança de 95%, organizei os dados fornecidos no enunciado em planilha do Excel para melhorar a visualização e facilitar o processamento dos dados.

Desse modo, o primeiro passo foi calcular o tamanho da floresta, no qual para encontrar N, dividi o tamanho da mesma por 0,054 (tamanho da parcela em ha) e, posteriormente, fiz a somatória das parcelas amostradas (n). Em seguida, para encontrar a variância da média, que se dá pela razão entre variância e o número de parcelas amostradas, onde, realizei os cálculos da estimativa da média e da estimativa da variância do volume comercial. Os resultados obtidos estão expressos na tabela abaixo:

N	9444,444	
n	13	
Média	12,080	m³
Variância	18,838	m³
Variância da média	1,449	m³/parcela
Média:	223,707	m³/ha

Posteriormente, para encontrar o intervalo de confiança, utilizei a função da média, da estatística t[0,975;n-1] e da varianância da média. Em seguida, foi necessario converter o volume comercial médio onde dividi os respectivos valores por 0,054 e assim consegui obter o erro amostral de de 21,726%, no qual podemos classifica-lo como sendo bem elevado. Os resultados obtidos estão expresso na tabela abaixo:

Estatística t[0,975;13-1]	2,18	
Intervalo de Confiança da Média	14,704	
(95%)	9,456	m³/parcela
Erro amostral:	21,724	%
Intervalo de Confiança da Média	272,3047	
(95%)	175,10983	m³/ha
Erro amostral	21,724	%

B) Para realizar o cálculo do tamanho da amostra necessária para um erro amostral de 5%, utilizei a equacção de função de N, da estatística t[0,975;n-1], do coeficiente de variação amostral e do Erro Amostral Relativo Percentual. O resultado obtido nessa equação foi de 240 parcelas, cujo estas não condizem com o número de parcelas utilizado para o respectivo cálculo dos graus de liberdade (n-1) da estatística t, e portanto, aplicando este mesmo conceito no respectivo numero o resultado foi de 196 parcelas que também não condizem com os graus de

liberdade, assim, foi aplicado novamente a iteração chegando ao resultado adequado de 197 parcelas. Os resultados obtidos estão expresso na tabela abaixo:

Erro amostral	5	%
Coeficiente de Variação Amostral	35,929	%
n* (parcelas)	240	
2°	196	
3°	197	
4°	197	

QUESTÃO 2:

A) O primeiro passo foi calcular o tamanho de cada estrato para as respectivas parcelas. Em seguida, estimei os valores de Variância, Média e Variância da Média dos estratos, separando-os em estratos A e B. O próximo passo foi a estimação do Total e Variância do Total dos estratos. O próximo passo foi a estimação do Total e Variância do Total dos estratos. Os resultados obtidos estão expresso nas tabelas abaixo:

Estimativas	Estrato		
	Α	В	
Tamanho	321	189	ha
Tamanho	5944,444	3500	parcelas
Amostra	8	5	parcelas
Índice de estrato	4411108	2446500	

Média	8,866	17,223	m³
Média	164,185	318,943	m³/ha
Média	8,866	17,223	m³/parcela
Variância	0,750725	1,480148	m³
Coeficiente de variação	9,773	7,064	%
Variância da média	0,094	0,29603	((m³/parcela)²)
Total do Estrato	52703,44	60280,15	m³
Variância do Total do Estrato	3315994	3626363	((m³)²)
Alocação Proporcional	0,629	0,371	

Posteriormente, o proximo passo foi calcular os estimadores da floresta, dando inicio pelo total da floresta, sendo seguido pela variância do total, tamanho, média e variância da média da floresta.

Em seguida, foi realizado os cálculos de intervalo de confiança de 95%, do volume comercial médio. Foi necessario o cálculo do tamanho efetivo da amostra (n_e) para obtenção do valor de graus de liberdade da estatísca t. A partir desse ponto, foi seguido os mesmo procedimentos realizados na questão 1 (converter o Volume Comercial Médio e seu Intervalo de Confiança de 95% de m³/parcela para m³/hectare).

Todos os resultados obtidos, descritos acima, estão expresso nas tabelas abaixo:

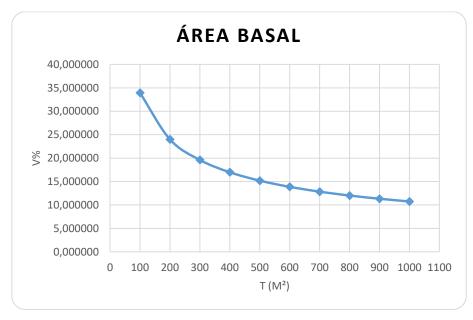
Estimadores para a floresta		
Total da floresta	112983,594	m³
Variância do Total da florestal	6942356,21	((m³)²)
Tamanho da floresta	9444,444	parcelas
Média da floresta	11,963	m³/parcela
Média da floresta	221,536	m³/ha
Variância da média da floresta	0,078	
Tamanho efetivo da amostra na floresta	21	parcelas
Estatística t[0,975;19-1]	2,10	
	12,549	
Intervalo de Confiança da média (95%)	11,377	m³/parcela
Erro amostral	4,899	%
Intervalo de Confiança da média (95%)	232,391	
intervalo de Comiança da Media (55%)	210,682	m³/ha
Erro amostral	4,899	%

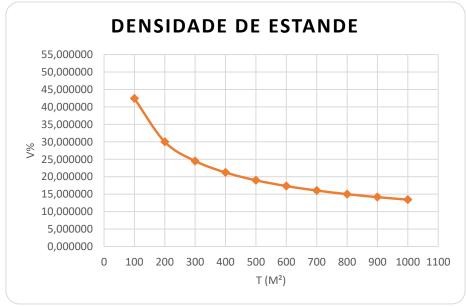
B) Primeiramente, foi calculado o Tamanho da Amostra para o Erro Aceitável de 5%, onde também foi necessário realizar iterações para que o resultado se tornasse adequado ao número de graus de liberdade da estatística t. Os resultados obtidos estão expressos nas tabelas abaixo:

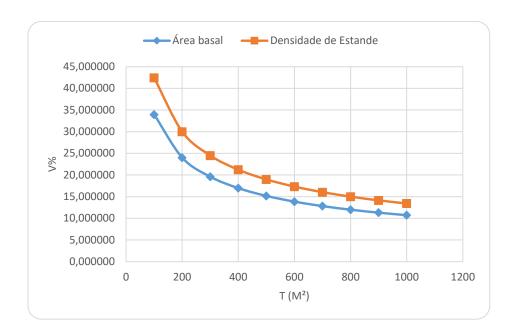
Erro amostral relativo aceitável	5	%
Tamanho da Amostra para Erro Aceitável	14	parcelas
Estatística t[0,975;30-1]	2,05	
2a. Iteração	14	parcelas
Estatística t[0,975;28-1]	2,05	
3a. Iteração	14	parcelas

QUESTÃO 3:

Variância da Média da Amostragem Estratificada / Variância da Média da Amostragem Aleatória Simples × 100


Por meio dessa equação pode-se entender que as variâncias e as respectivas precisões são inversamente proporcionais. Desse modo, pode-se concluir que a Amostragem Aleatória Simples é 22,55% menos precisa Amostragem Estratificada. Portanto, podemos concluir que a Amostragem Estratificada é mais precisa em seus respectivos cálculos.


QUESTÃO 4:


O método de Freese permite a criação de gráficos com linhas tendências, dos valores de coeficiente de variação, onde estabele-se uma curva que serve como parâmetro para definição do valor ótimo de tamanho de parcela. Desse modo, selecionei dez valores para ser colocado no modelo, a fim de estabelercemos uma curva. Os resultados obtidos estão expressos nas tabelas abaixo:

Área Basal		
T (m²)	Área basal	
100	33,941125	
200	24,000000	
300	19,595918	
400	16,970563	
500	15,178933	
600	13,856406	
700	12,828540	
800	12,000000	
900	11,313708	
1000	10,733126	

Densidade de Estande		
	Densidade de	
T (m²)	Estande	
100	42,426407	
200	30,000000	
300	24,494897	
400	21,213203	
500	18,973666	
600	17,320508	
700	16,035675	
800	15,000000	
900	14,142136	
1000	13,416408	

Portanto, podemos concluir que as curvas são bem semelhantes entre si, porém, a melhor definição para a dimensão do arvoredo se dá pelo ponto em que a curva esteja mais plana possível em relação ao eixo X. Desse modo, para esse inventário a parcela deverá ter entre 600 m² a 700 m² de área.