Silvimetria com Medidas Auxiliares

Estimadores de Razão e Regressão

by João Luís Ferreira Batista on 2020/11

» O que veremos nessa aula?

Sumário

- * Silvimetria com Medidas Auxiliares
- * Conceitos
- * Estimador de Razão
- Aplicação do Estimador de Razão
- * Estimador de Regressão
- Aplicações do Estimador de Regressão

» Conceitos

Y - Medida de Interesse

* Medição mais complexa e cara

⇒ p.ex.: produção lenhosa em volume

⇒ p.ex.: produção lenhosa em biomassa

Pode depender do tamanho da unidade amostra

⇒ pe.ex: o número de árvores urbanas

⇒ p.ex.: produção lenhosa

» Conceitos

X - Medida Auxiliar

- * Medida fácil e barata de se obter
 - ⇒ densidade de estande
 - \Rightarrow área basal
- * Dimensões da unidade amostra
 - ⇒ perímetro da quadra
 - ⇒ área da parcela

» Conceitos

Estimadores de Razão e Regressão

- st Usam a relação entre Y e X para
 - ⇒ aumentar a precisão de estimativas
 - \Rightarrow reduzir a variabilidade observada de Y
- st Quanto mais estreita a relação Y-X:
 - \Rightarrow mais forte a correlação Y-X
 - ⇒ maior o ganho do estimador

Ganho de Precisão

- st Conhecimento dos parâmetro populacionais de X
 - \Rightarrow média populacional: μ_X
 - \Rightarrow total populacional: τ_X
- * Frequentemente, temos esse conhecimento

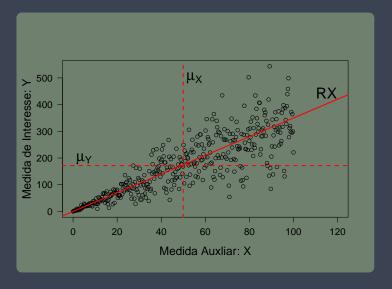
» Razão Populacional

Novo parâmetro populacional: a Razão

* Razão das variáveis de interesse (Y) e auxiliar (X)

$$R = \frac{\mu_y}{\mu_x} = \frac{\tau_y}{\tau_x}$$

* Estimador da Razão:


$$\widehat{R} = \frac{\widehat{\mu}_y}{\widehat{\mu}_x} = \frac{\sum y_i/n}{\sum x_i/n} = \frac{\sum y_i}{\sum x_i} = \frac{\widehat{\tau}_t}{\widehat{\tau}_x}$$

» Relação entre as Variáveis Y e X

Situação Adequada para o Estimador de Razão

- * Relação linear entre Y e X: reta
- * Relação passa pela origem
- * Dispersão de Y cresce com aumento de X
- ⇒ Relação Proporciona

ightarrow Relação entre as Variáveis Y e X

Estimadores de Variância

Variância Populacional da Medida de Interesse: N

* Formula conceitual:

$$\widehat{\sigma}_R^2 = \frac{\sum_{i=1}^n (y_i - \widehat{R}x_i)^2}{n-1}$$

* Formula de cálculo:

$$\widehat{\sigma}_R^2 = \frac{\sum y_i^2 + \widehat{R}^2 \sum x_i^2 - 2\widehat{R} \sum y_i x_i}{n-1}$$

Variância do Estimador de Razão: \widehat{R}

$$\operatorname{Var}(\widehat{R}) = \frac{1}{\mu_x^2} \frac{\widehat{\sigma}_R^2}{n} \left[1 - \frac{n}{N} \right]$$

» Média da Variável de Interesse

Estimador da Média da Variável de Interesse (Y): μ_F

* Estimador da Média:

$$\widehat{\mu}_R = \widehat{\mu}_y \mu_x = \widehat{R} \mu_x = \widehat{R} \frac{\tau_x}{N}$$

* Variância da Média:

$$\operatorname{Var}(\widehat{\mu}_R) = \left(\frac{\mu_x}{\widehat{\mu}_x}\right)^2 \operatorname{Var}(\widehat{R})$$

$$\operatorname{Var}(\widehat{\mu}_R) = \left(\frac{\mu_x}{\widehat{\mu}_x}\right)^2 \frac{\widehat{\sigma}_R^2}{n} \left[1 - \frac{n}{N}\right]$$

» Total da Variável de Interesse

Estimador do Total da Variável de Interesse (Y): τ_{P}

* Estimador do Total

$$\widehat{\tau}_R = \widehat{R} \, \tau_x$$

Variância do Total

$$\operatorname{Var}(\widehat{\tau}_R) = \tau_x^2 \operatorname{Var}(\widehat{R}) = \left(\frac{\tau_x}{\mu_x}\right)^2 \frac{\widehat{\sigma}_R^2}{n} \left[1 - \frac{n}{N}\right]$$

$$\operatorname{Var}(\widehat{\tau}_R) = \frac{\widehat{\sigma}_R^2}{n} N(N-n)$$

» Tamanho de Amostra

Baseado no Estimador da Razão

* Fórmula Iterativa:

$$n_R^* = \frac{t^2 V_{\%R}^2 N}{E_{\%R}^2 \mu_x^2 N + t^2 V_{\%R}^2}$$

- st $E_{raketigar_R}$ erro amostral desejado na Razão: \widehat{R}
- * Coeficiente de Variação:

$$V_{\%R} = \frac{\sqrt{\widehat{\sigma}_R^2}}{\widehat{R}} 100$$

» Tamanho de Amostra

Baseado no Estimador da Média

* Fórmula Iterativa:

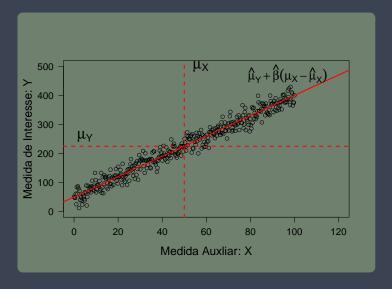
$$n_{\mu}^{*} = \frac{t^{2} V_{\%\mu}^{2} N}{E_{\%\mu}^{2} N + t^{2} V_{\%\mu}^{2}}$$

- st $E_{\%\mu}$ erro amostral desejado na média: $\widehat{\mu}_{E}$
- * Coeficiente de Variação:

$$V_{\%\mu} = \frac{\sqrt{\widehat{\sigma}_R^2}}{\widehat{\mu}_R} 100$$

Levantamento em Floresta Nativa

- st Floresta com área de 500~ha
- * Levantamento por parcelas em faixa
- * Parcelas alinhadas num eixo de 12500 m
- * Parcelas em faixas: largura de 10 m
- * Parcelas em faixas: comprimento variável
- * Tamanho da população: N = 12500/10 = 1250.
- * Tamanho médio das parcelas: $500/1250 = 0,400 \ ha$
- * Correção da variação do comprimento:
 - ⇒ Estimador de Razão


Parcela	Área	Número de Árvores		Área Basal	
	(ha)		(ha^{-1})	(m^2)	$(m^2 ha^{-1})$
101	0.115	47	409	2.61	22.71
405	0.250	72	288	3.74	14.97
408	0.250	83	332	3.79	15.15
410	0.250	95	380	6.72	26.88
412	0.250	105	420	6.06	24.23
413	0.250	108	432	12.08	48.31
415	0.250	60	240	5.61	22.44
416	0.250	91	364	4.89	19.57
417	0.250	83	332	8.35	33.40
401	0.500	158	316	10.24	20.47
403	0.500	121	242	6.81	13.63
404	0.500	120	240	6.48	12.95
406	0.500	171	342	8.27	16.55
407	0.500	143	286	8.82	17.64
409	0.500	166	332	11.08	22.16
411	0.500	192	384	15.54	31.09
414	0.500	170	340	14.38	28.77

» Relação entre as Variáveis Y e X

Situação Adequada para o Estimador de Regressão

- * Relação linear entre Y e X: reta
- * Relação não passa necessariamente pela origem
- * Dispersão de Y é constante, não depende de X
- ⇒ Relação Linear Simples

» Relação entre as Variáveis Y e X

Estimador da Média

Estimador da Média da Variável de Interesse Y

* Estimador de Regressão da Média

$$\widehat{\mu}_L = \widehat{\mu}_y + \widehat{\beta} (\mu_x - \widehat{\mu}_x)$$

* Médias amostrais:

$$\widehat{\mu}_y = \frac{\sum_{i=1}^n y_i}{n} \qquad \widehat{\mu}_x = \frac{\sum_{i=1}^n x_i}{n}$$

* Estimador de regressão

$$\widehat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \widehat{\mu}_x) (y_i - \widehat{\mu}_y)}{\sum_{i=1}^{n} (x_i - \widehat{\mu}_x)^2}$$

$$\widehat{\beta} = \frac{\sum x_i y_i - \left[\sum x_i \sum y_i\right]/n}{\sum x_i^2 - \left[\sum x_i\right]^2/n}$$

Estimador da Variância

Variância Populacional da Medida de Interesse Y

$$\widehat{\sigma}_{L}^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \widehat{\mu}_{y})^{2} - \widehat{\beta}^{2} \left[\sum_{i=1}^{n} (x_{i} - \widehat{\mu}_{x})^{2} \right]}{n-2}$$

$$\widehat{\sigma}_L^2 = \frac{\left[\sum y_i^2 - \left(\sum y_i\right)^2/n\right] - \widehat{\beta}\left[\sum x_i^2 - \left(\sum x_i\right)^2/n\right]}{n-2}$$

Variância da Média da Medida de Interesse Y

$$\operatorname{Var}(\widehat{\mu}_L) = \frac{\widehat{\sigma}_L^2}{n} \left[1 - \frac{n}{N} \right]$$

» Estimador do Total

Total da Medida de Interesse Y

Total.

$$\widehat{\tau}_L = N \widehat{\mu}_L = N \widehat{\mu}_y + \widehat{\beta} (\tau_x - N \widehat{\mu}_x)$$

Variância do Total:

$$\operatorname{Var}(\widehat{\tau}_L) = N^2 \operatorname{Var}(\widehat{\mu}_L) = \frac{\widehat{\sigma}_L^2}{n} N(N - n)$$

Tamanho de Amostra

Tamanho Adequado de Amostra

Fórmula Iterativa:

$$n^* = \frac{t^2 V_{\%}^2 N}{E_{\%}^2 N + t^2 V_{\%}^2}$$

 $E_{\%}$ – Erro Amostral desejado na Média: $\widehat{\mu}_{L}$ Coeficiente de Variação:

$$V_{\%} = \frac{\sqrt{\widehat{\sigma}_L^2}}{\widehat{\mu}_L} 100$$

Compartimento de manejo de floresta nativa

- * Compartimento: $350 \times 700 \ m$
- * Área total do compartimento: $24,5 \ ha$
- * Censo: Árvores $DAP > 50 \ cm$
- * Amostra: Árvores $\overline{DAP} \geq 20 \ cm$
- st 14 parcelas em faixa: 350 imes 10~m
- * Tamanho da população: N=700/10=70
- * Estimar área basal $DAP > 20 \ cm$
- st Baseada na área basal DAP > 50~cm

$$\Rightarrow \mu_x = 5,180449 \ m2/ha$$

⇒ Estimador de Regressão

Arvoredo	Número de Árvores $\left(ha^{-1} ight)$	Área Basal (m^2ha^{-1})	DAP Médio (cm)	Volume Lenhoso $(m^3 \ ha^{-1})$	Área Basal $DAP \geq 50 \ cm$ $(m^2 \ ha^{-1})$
1	162.86	17.89	31.40	187.22	9.39
2	125.71	9.08	27.38	80.00	2.47
3	151.43	13.92	29.59	137.61	6.40
4	140.00	9.58	26.68	83.77	2.71
5	140.00	8.51	25.01	73.01	1.92
6	111.43	7.61	25.51	71.63	2.24
7	137.14	11.25	28.08	106.25	3.78
8	131.43	17.63	34.57	192.63	10.75
9	165.71	12.26	27.97	107.80	2.74
10	145.71	12.52	29.37	116.93	5.34
11	140.00	14.97	32.77	146.16	8.41
12	137.14	15.17	32.93	152.77	7.10
13	165.71	10.25	25.80	85.49	1.81
14	94.29	7.27	27.46	66.84	2.86

Fim!

Muito Obrigado!