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CHAPTER 1

Evidence

Scientists and philosophers of science often emphasize that science is a
fallible enterprise. The evidence that scientists have for their theories does
not render those theories certain. This point about evidence is often
represented by citing a fact about logic: The evidence we have at hand
does not deductively entail that our theories must be true. In a deductively
valid argument, the conclusion must be true if the premises are. Consider
the following old saw:

All human beings are mortal.

Socrates is a human being.

Socrates is mortal.

If the premises are true, you cannot go wrong in believing the conclusion.
The standard point about science’s fallibility is that the relationship of
evidence to theory is not like this. The correctness of this point is most
obvious when the theories in question arc far more general than the
evidence we can bring to bear on them. For example, theories in physics
such as the general theory of relativity and quantum mechanics make
claims about what is true at a// places and «// times in the entire universe.
Our observations, however, are limited to a very small portion of that
immense totality. What happens here and now (and in the vicinity
thereof) does not deductively entail what happens in distant places and at
times remote from our own.

If the evidence that science assembles does not provide certainty about
which theories are true, what, then, does the evidence tell us? It seems
entirely natural to say that science uses the evidence at hand to say which
theories are probably true. This statement leaves room for science to be
fallible and for the scientific picture of the world to change when new
evidence rolls in. As sensible as this position sounds, it is deeply con-
troversial. The controversy I have in mind is not between science and
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nonscience; I do not mean that scientists view themselves as assessing how
probable theories are while postmodernists and religious zealots debunk
science and seek to undermine its authority. No, the controversy I have in
mind is alive within science. For the past seventy years, there has been a
dispute in the foundations of statistics between Bayesians and frequentists.
They disagree about many issues, but perhaps their most basic disagree-
ment concerns whether science is in a position to judge which theories are
probably true. Bayesians think that the answer is yes while frequentists
empbhatically disagree. This controversy is not confined to a question that
statisticians and philosophers of science address; scientists use the
methods that statisticians make available, and so scientists in all fields
must choose which model of scientific reasoning they will adopt.

The debate between Bayesians and frequentists has come to resemble
the trench warfare of World War 1. Both sides have dug in well; they
have their standard arguments, which they lob like grenades across the no-
man’s-land that divides the two armies. The arguments have become
familiar and so have the responses. Neither side views the situation as a
stalemate, since each regards its own arguments as compelling. And yet
the warfare continues. Fortunately, the debate has not brought science to
a standstill, since scientists frequently find themselves in the convenient
situation of not having to care which of the two approaches they should
use. Often, when a Bayesian and a frequentist consider a biological theory
in the light of a body of evidence, they both give the theory high marks.
This allows biologists to walk away happy; they’ve got their answer to
the biological question of interest and don’t need to worry whether
Bayesianism or frequentism is the better statistical philosophy. Biologists
care about making discoveries about organisms; the nature of reasoning
is not their subject, and they are usually content to leave such
“philosophical” disputes for statisticians and philosophers to ponder.
Scientists are consumers of statistical methods, and their attitude towards
methodology often resembles the attitude that most of us have towards
consumer products like cars and computers. We read Consumer Reports
and other magazines to get expert advice on what to buy, but we rarely
delve deeply into what makes cars and computers tick. Empirical scientists
often use statisticians, and the “canned” statistical packages they provide,
in the same way that consumers use Consumer Reports. This is why the
trench warfare just described is not something in which most biologists
feel themselves to be engulfed. They live, or try to live, in neutral
Switzerland; the Battle of the Marne (they hope) involves others, far
from home.

k
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This book is about the concept of evidence as it applies in evolutionary
biology; the present chapter concerns general issues abourt evidence that
will be relevant in subsequent chapters. I do not aim here to provide
anything like a complete treatment of the debate between Bayesianism
and frequentism, nor is my aim to end the trench warfare that has per-
sisted for so long. Rather, I hope to help the reader to understand what
the shooting has been about. I intend to start at the beginning, to not use
jargon, and to make the main points clear by way of simple examples.
There are depths that I will not attempt to plumb. Even so, my treatmenc
will not be neutral; in fact, it is apt to irritate both of the entrenched
armies. I will argue that Bayesianism makes excellent sense for many
scientific inferences. However, I do agree with frequentists that applying
Bayesian methods in other contexts is highly problematic. But, unlike |
many frequentists, I do not want to throw out the Bayesian baby with the
bathwater. I also will argue that some standard frequentist ideas are flawed
but that others are more promising. With respect to frequentism as well, I
feel the need to pick and choose. My approach will be “eclectic”; no
single unified account of all scientific inference will be defended here,
much as I would like there to be a grand unified theory.

One further comment before we begin: I have contrasted Bayesianism
and frequentism and will return to this dichotomy in what follows.
However, there are different varieties of Bayesianism, and the same is true
of frequentism. In addition, there is a third alternative, likelihoodism
(though frequentists often see Bayesianism and likeliboodism as two sides
of the same deplorable coin). We will separate these inferential philoso-
phies more carefully in what follows. But for now we begin with a statk
contrast: Bayesians attempt to assess how probable different scientific
theories are, or, more modestly, they try to say which theories are more
probable and which are less. Frequentists hold that this is not what the
game of science is about. But what do frequentists regard as an attainable
goal? Hold that question in mind; we will return to it.

1.1 ROYALL'S THREE QUESTIONS

The stacistician Richard Royall begins his excellent book on the concept
of evidence (Royall 1997: 4) by distinguishing three questions:

(1) What does the present evidence say?
(2) What should you believe?
(3) Whart should you do?
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Figure 1.1 Present evidence and its downstream consequences.

If you are rational, you form your beliefs by consulting the evidence
you have just gained, and when you decide what to do (which actions to
perform), you should take account of what you believe. But answering
question (2) requires more than an answer to (1), and answering question
(3) requires more than an answer to (2). The extra elements needed are
depicted in Figure 1.1.

Suppose you are a physician and you are ralking to the patient in your
office about the result of his tuberculosis test. The report from the lab says
“positive.” This is your present evidence. Should you conclude that the
patient has tuberculosis? You want to take the lab report into account, but
you have other information besides. For example, you previously had
conducted a physical exam. Before you looked at the test report, you had
some opinion about whether your patient has tuberculosis. The lab report
may modify how certain you are about this. You update your degree of
belief by integrating the new evidence with your prior information. This
may lead you say to him “your probability of tuberculosis is 0.999.”

If your patient is a philosopher who enjoys perverse conversation, he
may reply, “but tell me, doctor, do I have wuberculosis, or not?” He
doesn’t want to know how probable it is that he has tuberculosis; he wants
to know whether he has the disease — yes or no. This raises the question of
whether a proposition’s having a probability of 0.999 suffices for one to
believe it, where belief is conceptualized as a dichotomous category:
Either you believe the proposition or you do not. It may seem that a high
degree of belief suffices for believing a proposition (even if it does not
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suffice for being certain that the proposition is true), but there are
complications. Consider Kyburg’s (1970) lottery paradox. Suppose 1,000
lottery tickets are sold and the lottery is fair. Fair means that one ticket
will win and each has the same chance of winning. If high probability
suffices for belief, you are entitled to believe that ticket no. 1 will not win,
since the probability of ticket 1’s not winning is 5. The same is true of
ticket no. 2; you should believe that it won’t win. And so on, for each of
the 1,000 tickets. But if you put these 1,000 beliefs (each of the form
ticker i will not win) together with the rest of what you believe, your
beliefs have become contradictory: You believe that some ticket will win
(since you believe the lottery is fair), and you have just accepted the
proposition that no ticket will win. Kyburg’s solution to this puzzle is to
say that acceptance does not obey a rule of conjunction; you can accept A
and accept B without having to accept the conjunction A¢B." This may
be the best one can do for the concept of dichotomous belief, but it raises
the question of whether we really need such a concept. After all, our
everyday thought is littered with dichotomies that, upon reflection, seem
to be crudely grafted to an underlying continuum. For example, we speak
of people being bald, but we know that there is no threshold number of
hairs that marks the boundary.> We are happy to abandon these crude
categories when we need to, but we return to them when they are
convenient and harmless.

If it makes sense to talk about rational acceptance and rational rejec-
tion, those concepts must bear the following relation to the concept of
evidence:

If learning that E is true justifies you in rejecting (i.e., disbelieving) the propo-
sition P, and you were not justified in rejecting P before you gained this in-
formation, then E must be evidence against P.

If learning that E is true justifies you in accepting (i.e., believing) the proposition
P, and you were not justified in accepting P before you gained this information,
then £ must be evidence for P.

A theory of rational acceptance and rejection must provide more than
this modest principle, which may seem like a mere crumb, hardly worth

! See Kaplan (1996) for a theory of rational acceptance that, unlike Kyburg’s, obeys the conjunction
principle.

2y say we “know” this, but Williamson (1994) and Sorenson (2001) have argued that in each use of
a vague term, there is a cutoff, even if speakers are not aware of what it is. Their position is
counterintuitive, but it cannot be dismissed without attending to their arguments (which we won’t

do here).
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mentioning at all. But, in fact, it is worth stating, since later in this
chapter it will do some important philosophical work.’

Even if this modest principle linking evidence and rational acceptance
seems obvious, there is an old philosophical reason for pausing to ponder it.
In the seventeenth century, Blaise Pascal sketched an argument that came
to be called Pascal’s wager. Earlier proofs of the existence of God had tried
to demonstrate that there is evidence that God exists; Pascal endeavored to
show that one ought to believe in God even if all the evidence one has is
evidence against. The rough idea is this: If there is a God, you’ll go to
Heaven if you're a believer and go to Hell if you’re not; on the other hand,
if there is no God, it won’t much affect your well-being whether or not you
believe. Pascal wrote when probability theory was just starting to take its
modern mathematical form, and his argument is a nice illustration of ideas
that came to be assembled in decision theory. Though there is room to
dispute the details of this argument (on which see Mougin and Sober
1994), the wager is of interest here because it appears to challenge the
“modest” principle just enunciated. The wager purports to provide a
reason for accepting the proposition that God exists even though it does not
cite any evidence that there is a God. It is easy to think of nontheological
arguments that pose the same challenge. Suppose I promise to give you
$1,000,000 if you can get yourself to believe that the President is now
juggling candy bars. If T am trustworthy, I have given you a reason to believe
the proposition though I have not provided any evidence that it is true.

Commentators on Pascal’s wager often distinguish two types of rational
acceptance. The act of accepting a proposition can make good prudential
sense, but that does not mean that the proposition accepted is well sup-
ported by evidence. When acceptance is driven by the costs and benefits
that attach to the act of believing, I'll call this “prudential acceptance.”
When it is driven by the bearing of evidence on the proposition believed,
I'll use the term “evidential acceptance.” The modest principle linking
evidence and “acceptance” really pertains to evidential acceptance. The
principle, modified in this way, is true; in fact, it may even be true by
definition. However, this does not settle whether it is ever permissible to

3 Itis interesting that the concept of evidence relates pairs of propositions to each other, while the
concepts of acceptance and rejection relate propositions to persons. Smoke is evidence for fire,
regardless of whether any agent takes this fact to heart. However, rational acceptance (or rejection)
means that a person is justified in accepting (or rejecting) some proposition. The present
disciplinary divide berween philosophers of science and epistemologists coincides to a considerable
degree with this distinction between questions concerning how propositions are related to each
other and questions concerning how propositions are related to persons.
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indulge in prudential acceptance. William James (1897) defends the right

to believe when the evidence is silent in his essay “The Will to Believe.”
W. K. Clifford (1999) replies, in “The Ethics of Belief,” that it is always
wrong “‘to believe upon insufficient evidence.” T will not try to adjudicate
between these two positions. Suffice it to say that the modest principle
stated earlier is binding on those who commit to having evidence control
what they believe.

It may seem a long jump from Pascal’s seventeenth-century theology to
the hard edges of twentieth-century statistics, but Pascal’s concept of
prudential acceptance lives on in frequentism. The following remark by
Neyman and Pearson (1933: 291) has often been quoted:

No test based upon the theory of probability can by itself provide any valuable
evidence of the truth or falsehood of {an] hypothesis {...] But we may look at
the purpose of tests from another viewpoint. Without hoping to know whether
each separate hypothesis is true or false, we may search for rules to govern our
behavior with regard to them, in following which we insure that, in the long run
of experience, we shall not be too often wrong.

Neyman and Pearson think of acceprance and rejection as bebaviors,
which should be regulated by prudential considerations, not by
“evidence,” which, for them, is a will o’ the wisp. The prudential con-
siderations they have in mind do not involve going to Heaven or Hell, but
rather pertain to having true beliefs or false ones. There is no such thing as
allowing “evidence” to regulate what we believe. Rather, we must
embrace a policy and stick to it. If we do so, we can be certain (or, at least,
it is overwhelmingly probable) that the percentage of false beliefs we
accumulate over the long run will be held below some predesignated
minimum. Not that present-day frequentists are all so dismissive of the
concept of evidence (§1.4). But frequentists, early and late, have often
embraced the idea of prudential belief.

Let us return to Figure 1.1. Suppose you, the physician, are 99.9
percent certain that your patient has tuberculosis, this degree of belief
being based on the present tuberculosis test result and on other infor-
mation you had from before. The thing to notice next is that your degree
of belief does not, by itself, dictate what you should say or do. Should you
tell your patient what you think? Should you remain silent? Should you
lie? Should you hand him the pink pills you have in your desk? A rational
decision about what to do requires more than the evidence you have and
more than the degree of belief you have; a choice of action requires the
input of values (which economists call uzilities).
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1.2 THE ABCs OF BAYESIANISM

Bayesianism is an answer to Royall’s question (2): What should you
believe? Bayesianism refines this question, substituting the concept of
degree of belief for the dichotomous concept of believing or not believing
a proposition. In our running example, Bayesianism addresses the ques-
tion of how certain you should be that your patient has tuberculosis, given
that his tuberculosis test came back positive.

Bayes’ theorem

Bayesianism is based on Bayes’ theorem, but the two are different. Bayes’
theorem is a result in mathematics.? It is called a theorem because it is
derivable from the axioms of probability theory (in fact, from a standard
definition of conditional probability). As a piece of mathematics, the
theorem is not controversial. Bayesianism, on the other hand, is a
philosophical theory — it is an epistemology. It proposes that the math-
ematics of probability theory can be put to work in a certain way to
explicate various concepts connected with issues about evidence, infer-
ence, and rationality.

Here is the rough idea of how Bayesianism uses Bayes’ theorem: Before
you make an observation, you assign a probability to the hypothesis H;
this probability may be high, medium, or low (all probabilities by
definition must be berween 0 and 1, inclusive). After you make the
observation, thereby learning that some observation statement O is true,
you update the probability you assigned to H to take account of what you
just learned. The probability that / has before the observation is called its
prior probability; it is represented by Pr(H). The word “prior” just means
before; it doesn’t mean that you know its value a priori (i.e., without any
empirical input at all). The probability that A has in the light of the
evidence O is called H’s posterior probability; it is represented by the
conditional probability Pr(H| O); read this as “the probability of H,
given O.” Bayes’ theorem shows how the prior and the posterior prob-
ability are related.

Now for the derivation of the theorem. Forget for just a moment that
means hypothesis and O means observation. Just regard them as any two

‘A special case of the theorem was derived by Thomas Bayes and was published posthumously in the
Proceedings of the Royal Society for 1764. Bayes” derivation was laborious and not fully general, very
unlike the now-standard streamlined derivation I'll describe here.
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propositions. Kolmogorov’s (1950) definition of conditional probability

is this:
Pr(H & 0O)

Pr(H|0) = =5

The definition is intuitive. For example, what is the probability that a
card drawn at random from a standard deck is a heart, given that it is
red? According to the Kolmogorov definition, this conditional prob-
ability has the same value as the ratio Pr(heart & red)/Pr(red). The
denominator has a value of 1. The proposition in the numerator, hearz
& red, is equivalent to heart, so the value for the numerator is §. Hence,
the conditional probability has a value of 1. By switching Hs and Os
with each other in the Kolmogorov definition, you can see that it also is
true that

Pr(O & H)

Pr(O|H) = e

This means that the probability of the conjunction H&O can be
expressed in two different ways:

Pr(H & O) = Pr(H | O) Pr(O) = Pr(O | H)Pr(H).

From the second equality in the previous line, we obtain

Pr(O|H)Pr(H)
Pr(0)

Bayes’ theorem: Pr(H | O) =

Here is some more terminology. I've already mentioned the posterior
probability and the prior probability that appear in Bayes’ theorem, but
two other quantities are also mentioned. Pr(O) is the unconditional
probability of the observations. And R. A. Fisher dubbed Pr(O|H) the
likelihood of H. Because Fisher’s terminology has become standard in
statistics, 1 will use it here. However, this terminology is confusing, since
in ordinary English, “likely” and “probably” are synonymous. So,
beware! You need to remember that “likelihood” is a technical term. The
likelihood of H, Pr(O| H), and the posterior probability of H, Pr(H| O),
are different quantities and they can have different values. The likelihood
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of H is the probability that A confers on O, not the probability that O
confers on H. Suppose you hear a noise coming from the attic of your
house. You consider the hypothesis that there are gremlins up there
bowling. The likelihood of this hypothesis is very high, since if there are
gremlins bowling in the attic, there probably will be noise. But surely you
don’t think that the noise makes it very probable that there are gremlins
up there bowling. In this example, Pr(O| H) is high and Pr(H| O) is low.
The gremlin hypothesis has a high likelihood (in the technical sense) but a
low probability.

Let me add two more details that underscore the distinction between
H's probability and icts likelihood.

Pr(H) + Pr(notH ) = 1
and
Pr(H | O) + Pr(notH | O) = 1

as well. The probability of a proposition and the probability of its
negation sum to one; this is true for prior and also for posterior prob-
abilities. But likelihoods need not sum to one; Pr(O| H) + Pr(O| notH)
can be less than 1, or more. Suppose you observe that Sue is a millionaire
and wonder whether she won her wealth in last week’s lottery. Your
observation is very improbable under the hypothesis that she bought a
ticket in the lottery and also under the hypothesis that she did not. To
summarize this point: If you know the probability of H, you thereby
know the probability of 702/ but knowing the likelihood of H leaves the
likelihood of notH completely open.

Another difference between likelihoods and probabilities concerns the
difference between logically stronger and logically weaker hypotheses.
Consider the following two hypotheses about the next card you’ll be dealt
from a standard deck:

H; = It’s a heart.
H, = It’s the Ace of Hearts.

The hypothesis H> is logically stronger than H; this means that A entails
H, but not conversely. Suppose the dealer is careless and you catch a
glimpse of the card before it is dealt; you observe O = the card is red.
Notice that £ has the higher posterior probability; Pr(H;| O) = 1 while
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Pr(H;| O) = 5. But the two hypotheses have identical likelihoods, since
Pr(O|H)) = Pr(O| Hy) = 1. It is a theorem of probability theory that

If proposition X entails proposition Y, then Pr(X) < Pr(Y), and
Pr(X |data) < Pr(Y | data) no matter what the data are.

Logically stronger hypotheses can’t have higher probabilities than logically
weaker hypotheses, but they can have higher likelihoods. This point about
likelihoods is illustrated by the relationship of /; and A to the obser-

vation O’ = the card is an ace.

A rule for updating

The different quantities used in Bayes’ theorem are all available before
you find out whether the statement O is true. You can know the value of
Pr(H | O) without knowing whether O is true, just as you can know that a
conditional (an if/then statement) is true without knowing whether its
antecedent (the if part) is true. All Bayes’ theorem tells you is how the
different probabilities it mentions, all assigned values at the same time,
must be related. The theorem is, so to speak, a synchronic statement. But,
as mentioned, Bayesianism provides advice about how you should change
your degree of belief as you acquire new evidence. Bayes’ theorem,
therefore, must be supplemented by a rule for updating: This rule
describes how probabilities should be related diachronically.

The rule of updating by strict conditionalization says that if O is the
totality of the new information you have acquired, your new probabilicy
for H should be equal to your ol value for Pr(H| O). In other words:
Proow(H) = Pripen(F| O), if O is all the evidence you acquired between
then and now.

Before the result of the tuberculosis test is placed before you, you
know the value of Pr(S has tuberculosis | the test is positive) and Pr(S has
tuberculosis | the test is negative). These are your old posterior probabil-
ities. When you learn that the test turned out positive, your new degree of
belief for the proposition that § has tuberculosis is the one you assigned to
the first of these conditional probabilities.

When I say that this rule for updating applies to “your” probability,
does this mean that the Bayesian framework concerns only subjective
degtrees of belief? No — it is more general than this. You can think of this
rule as giving normative advice to agents on how they should adjust the
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amount of certainty they have. But a rule for updating also provides
advice concerning what you should think the objective probability of a
proposition is. If you think that the objective prior probability of drawing
the Ace of Hearts from a normal deck is m_|~v and you think that the
objective posterior probability of the card’s being the Ace of Hearts, given
that it is red, is %, and you learn (just) that the next card drawn will be
red, then your new objective probability for the card’s being the Ace of
Hearts should be 5% It is useful to keep Bayesianism’s epistemological
advice about how probabilities should be assigned and manipulated
separate from the semantic question of what probability statements mean.
Not that interesting connections can’t be drawn between the two issues.
But first things first.

Strict conditionalization involves the idealization that an act of
observation has the result that you find out that an observation statement
is true or that it is false. What you learn isn’t just that O is probably true;
you learn that O is #rue. You then use this information to modify the
degree of belief you have for some other proposition H. Bayesianism with
strict conditionalization is a kind of hybrid philosophy, in which you
accept or reject O but you do not apply the concept of dichotomous belief
to H. Richard Jeffrey (1965) proposed a rule for updating in which you
acquire only a degree of belief in O; the concept of dichotomous belief is
thoroughly abandoned. Jeffrey’s probability kinematics describes how your
newly acquired degree of belief in O should affect your degree of belief
in H.®> For the purposes of this book, we can ignore Jeffrey’s refinement
and think of Bayesianism in terms of the idea of strict conditionalization.
In what follows, I won’t go to the trouble of distinguishing old prob-
ability assignments from new ones. Since I'll be focusing on the version of
Bayesianism that uses the rule of strict conditionalization, I'll treat the
posterior probability Pr(H | O) as representing your updated degree belief
once you learn that O is true (provided that O is 2/ you learned).

Notice that the rule for updating by strict conditionalization addresses
the case in which you now have a probability for proposition A, and you
also had a (conditional) probability for that proposition earfier. It
therefore fails to apply to cases of conceptual innovation in which A
involves concepts that you just formulated. You didn’t have a conditional

5 Although Jeffrey’s conditionalization is more realistic than strict conditionalization in terms of its
characterization of the input, it has a logical oddity that strict conditionalization avoids. The order
in which new evidence arrives can affect the final degree of belief in Jeffrey’s conditionalization, but
not in strict.
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probability for H earlier because H uses concepts you didn’t have available
back then. This is an especially important feature of some scientific
innovations; scientists often work within the confines of a fixed stock of
concepts, but every so often they break out. Evolutionists sometimes draw
a distinction between micro- and macroevolution (§2.19); the former
describes changes that occur within an enduring species whereas the latter
describes changes that result in the appearance of new species. Kuhn’s
(1962) distinction between normal science and revolutionary science is
similar; there is science pursued within an existing “paradigm” and sci-
ence that results in the formation of new paradigms. Bayesian updating by
strict conditionalization makes more sense in connection with the micro-
changes that occur within normal science; it is controversial whether it
can represent the macro-changes that occur in scientific revolutions.®

Posterior probabilities, likelihoods, and priors

Let’s apply Bayes’ theorem to the running example that you are a doctor
and your patient has a positive tuberculosis test result. You want to use
this new information to figure out how certain you should be that he has
tuberculosis. Bayes’ theorem says that

Pr(+ result | cuberculosis) Pr(tuberculosis)

(4) Pr(tuberculosis | + result) = Pr+ resuld)

Bayes’ theorem also can be stated for the hypothesis that S does #noz have
tuberculosis:

(5) Pr(no tuberculosis| + result)

_ Pr(+ result | no tuberculosis) Pr(no tuberculosis)

Pr(+ result)

Combining (4) and (5) yields the following equality of ratios:

(6) Pr(tuberculosis | + result)
Pr(no tuberculosis | + result)

_ Pr(+ result| tuberculosis) 9 Pr(tuberculosis)
~ Pr(+ result | no tuberculosis) ~ Pr(no tuberculosis) ’

% See Eells (1985) and Earman (1992) for discussion of the closely related problem of old evidence.
The problem described above is located in what Earman calls “the problem of new theories.”
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Notice that the quantity Pr(+4 result), the unconditional probability of
the observations, which is present in both (4) and (5), now has disap-
peared. Proposition (6) says that the ratio of posterior probabilities equals
the ratio of likelihoods times the ratio of priors.

Before you observe the test result, you have your two prior probabil-
ities; these must sum to one, but their ratio may of course be greater than
unity, or less. Will your observation of the positive test result lead you to
change your degrees of belief? They cannot if the two likelihoods are the
same. If

Pr(+ result | tuberculosis) = Pr(+ result | no tuberculosis),

the ratio of the posterior probabilities will be the same as the ratio of
priors. In this case, the observation is uninformative. In fact, you needn’t
even bother to check how the test came out. On the other hand, if

Pr(+ result | tuberculosis) > Pr{+ result|no tuberculosis),

your observation makes a difference. A positive test result will increase
your confidence that S has tuberculosis (and reduce your confidence
that he does not). In this case, the observation has the effect of making
the ratio of posterior probabilities larger than the ratio of priors. The
likelihood ratio, the first product term on the right-hand side of (6), is
the pathway by which the test result can lead you to revise your degree
of belief in whether S has tuberculosis. For Bayesianism, there is
no other.

Another way to see this point is to delve more deeply into the instance
of Bayes’ theorem given in (4). What does “the unconditional probability
of the observation” mean? A positive test result can occur when S has
tuberculosis, but it also can occur when S does not (in which case the test
result is mistaken). Both these possibilities are represented in the
unconditional probability of the observations:

(7)  Pr(+ result) = Pr(+ result| tuberculosis) Pr(tuberculosis)
+ Pr(+ result | no tuberculosis) Pr(no tuberculosis).
The unconditional probability of the observation is the average prob-

ability that the observation has under the two alternative hypotheses,
where the average is taken by using weighting terms supplied by the prior
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probabilities; in other words, Pr(+ result) is a weighted average of the two
likelihoods. If we use (7) to rewrite (4), we obrtain:

(8) Pr(wberculosis | + result)

Pr(+ result | tuberculosis) Pr(tuberculosis)

- Pr(+ result | tuberculosis) Pr(tuberculosis) + Pr(+ result | no tuberculosis)Pr(no tuberculosis)

If Pr(+ result| tuberculosis) = Pr(+ result| no tuberculosis), the denomin-
ator in (8) is equal to Pr(+ result | tuberculosis), in which case (8) simplifies to

Pr(tuberculosis | + result) = Pr(tuberculosis).

Without a difference in likelihoods, the posterior probability must have the
same value as the prior; the observation has not affected your degree of belief.

Confirmation

As mentioned earlier, Bayesianism is more than Bayes’ theorem. The
philosophy goes beyond the mathematics because the philosophy pro-
poses definitions of key epistemological concepts. For example,
Bayesianism defines confirmation as probability-raising and disconfirmation

as probability-lowering:

(Qual) O-confirms H if and only if Pr(H | O) > Pr(H).
Odisconfirms H if and only if Pr(H | O) < Pr(H).
O is confirmationally irrelevant to A if and only if
Pr(H|0) = Pr(H).

Confirmation does not mean proving true and disconfirmation does not
mean proving false; confirmation and disconfirmation mean only that an
observation should increase or reduce your confidence that H is rtrue.
Thus, the observation that O is true can confirm H even though Pr(H| O)
is still low; the posterior probability just has to be higher than the prior.
And O can disconfirm H even though Pr(H | O) is still high; O just has to
lower H's probability. Bayesian confirmation and disconfirmation involve
comparisons of probabilities; they say nothing about the absolute values of
any probability. Bayes’” theorem allows an equivalent definition of Bayesian
confirmation to be extracted from the one given above:

O confirms H if and only if Pr(O| H) > Pr(O | notH).
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To see whether O confirms H, don’t ask whether A, if true, would lead
you to expect that O is true. Rather, ask whether H makes O more
probable than notH does.

The definitions stated in (Qual) characterize a qualitative concept of
confirmation. They do not provide a measure of degree of confirmation;
(Qual) doesn’t say how much O confirms H. How might a guantitative
concept be defined? Here are some candidates to consider, where DoC(H, O)
represents the degree to which O confirms H:

(Diff) DoC(H, O)= Pr(H | O)—Pr(H).
(Ratio) DoC(H,0)= %
(L-Ratio) DoC(H, Q)= %M$ .

All three of these definitions agree that (Qual) is true. However, they
are not ordinally equivalent; they can disagree as to whether O; confirms
H,; more than O, confirms H,. For example, suppose that

Nu‘.AmN_O~vHO® va.ANlN~vHOM
Pr(H;| 0;) =0.09 Pr(H;) = 0.02.

According to (Diff), the difference measure, O; confirms H; more than O,
confirms F5, since 0.4 > 0.07. But, according to the ratio measure, the
reverse is true, &Dnmm < W The fact that these and other measures sometimes
disagree has given rise to a lively debate among Bayesians as to which measure
is best (Fitelson 1999). Bayesians who despair of resolving this question try to
restrict their discussion of confirmation to the qualitative definition (Qual).

Do we need to measure degree of confirmation? Perhaps the qualitative
notion is enough. After all, there seems to be little reason to compare how
much the fossil record confirms the Darwinian theory of evolution with how
much Eddington’s observation of light bending during an eclipse confirms
the GTR. True, but there are other scientific contexts in which quantitative
questions about confirmation matter. For example, in Chapter 4 we'll
consider the hypothesis that two or more species share a common ancestor,
and we’ll investigate whether the adaptive similarities that the species share
or the neutral similarities that they share provide stronger evidence in favor of

that hypothesis. Even if

Pr(X and Y have a common ancestor | X and Y share adaptive trait 73) > Pr(X
and Y have a common ancestor) and Pr(X and Y have a common ancestor | X and
Y share neutral trait 75) > Pr(X and Y have a common ancestor).

T
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there is another question that remains to be addressed. If it makes sense to
ask which kind of similarity provides stronger evidence for common
ancestry, (Qual) is not enough.

Reliability

What does it mean to say that a tuberculosis test is “reliable”? Does it
mean that what the test says has a high probability of being true? That is,
does it mean that

(9)  Pr(tuberculosis| + result) and Pr(no tuberculosis | — result)

are both large?

Or does it mean that when the person taking the test has tuberculosis (or
not), the procedure can be relied upon to say what is true? That is, does it
mean that

(10)  Pr(+ result | tuberculosis) and Pr(— result | no tuberculosis)

are both large?

As emphasized earlier, it is important not to confuse Pr(O|H) and
Pr(H| O). Recall the example about the gremlins. But what does the word
“reliability” mean?

Here’s how I think the term is used in ordinary English: When a
witness is reliable, what he or she says is probably true. Witnesses who are
apt to pick up on what is true might be siid to be sensitive; if the
proposition is true, they will probably notice that it is and tell you. In my
view, ordinary usage pairs “reliable” with (9) and “sensitive” with (10).
But whether or not this is how the terms are used in everyday discourse,
aficionados of probability have come to use the term “reliability” to
indicate that (10) is true, not that (9) is.” A reliable tuberculosis test
procedure has a large likelihood ratio for each possible test outcome:

Pr(+ result | tuberculosis) Pr(— result | no tuberculosis)

(R) > 1.0 > 1.0.

Pr(+ result | no tuberculosis) Pr(— resule | tuberculosis)

" Actually, the terminology is more varied. For example, a “reliable” method for ranking options

given a set of data is sometimes defined as one that usually returns the same ranking across differenc
data sets; a method that ignores the data and always imposes the same ranking would be perfecdy
“reliable” in this sense.
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Given this meaning, your patient § can obtain a positive test result on
the reliable tuberculosis test you gave him and sdll ic is highly
improbable that he has tuberculosis. This will be true if the prior
probability of §'s having tuberculosis is sufficiently low (imagine that
S is drawn at random from a population in which tuberculosis is
very rare and then is given the test). To verify that this can happen,
have another look at the relationship of the three ratios described in
proposition (6).

Why is the term “reliability” often used by probabilists with the
meaning described in (R)? Is this sheer perversity on their part? In fact,
there is reason to focus on (R) even though people take tuberculosis
tests to find out if they (probably) have the disease. Imagine using the
same test procedure in two populations. In the first, people frequently
have tuberculosis; in the second, they rarely do. There is a useful sense
of “reliability” in which the test procedure is equally reliable in the two
populations. Yet, if people are sampled at random in the two popula-
tions and then take the test, Pr(tuberculosis) is higher in the first
population than in the second. If the test is equally reliable in the two
cases, Pr(tuberculosis |+ test outcome) will be higher in the first case
than in the second. Tuberculosis tests are in this respect like a great
many detectors and measurement procedures. Whether the test returns a
positive or a negative verdict is determined just by facts specific to the
person or thing taking the test; thermometers are related to ambient
temperature in the same way, and pregnancy tests are related to preg-
nancy in that way as well. Whether the person has a common or a rare
condition is irrelevant to what the test will say. To put the point
abstractly, likelihoods are often independent of priors. But posterior
probabilities depend on both likelihoods and priors. This feature that a
test procedure has, which is stable across different applications in dif-
ferent populations, is worth noting; this is why the ratios described in
(R) are important.

In saying that the posterior probability of tuberculosis “depends” on
priors and likelihoods, but that the likelihoods are “independent” of
priors and posteriors, I am describing the physical characteristics of test
procedures, not the mathematical relationships characterized by Bayes’
theorem. In Bayes’ theorem, each of the quantities mentioned is a
mathematical function of the other three; given any three values, you can
calculate the fourth. However, this symmetry with respect to math-
ematical dependence is not present when we consider physical relation-
ships. Whether a tuberculosis test is apt to yield a positive result depends
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on whether the person taking the test has tuberculosis, not on whether
tuberculosis is common or rare.®

Expecration and expected value

It is often said that a baby born in the USA today can expect to live about
seventy-eight years. What does this mean? The reality is that a baby not
only might have a longer life than this, or a shorter one. Each possible
lifespan has its own probability; p, is the probability of living exactly one
year, p> is the probability of living exactly two, and so on. The figure of
seventy-eight years is the mathematical expectation, a technical term:’

E(S’s longetivity | S is born in the USA in 2008)
= 1(p1) +2(p2) + - - + n(p,) = Mm@b = 78 years.

E(x|y) represents the expected value of x given y; notice that x is a
quantity and y is a proposition. Probabilities must fall between 0 and 1,
but expected values need not. The expected value is an average; in fact, it
is a weighted average, because the different possible longevities have dif-
ferent probabilities.

If seventy-eight years is the life expectancy, does that mean that you
should expect a US newborn to live about seventy-eight years? That
depends on how different possible longevities are distributed around this
mean value. Figure 1.2 shows three hypothetical distributions. Each is
symmetrical and is centered on seventy-eight years, so 78 is the average
value according to each. It wouldn’t make much sense to expect a baby to
live about seventy-eight years if (a) were true. According to (a), a baby will
probably live only a very short life or a very long one; it will be
exceedingly rare for a baby wo live about seventy-eight years. In (b), all
lifespans from 0 to 156 years are equally probable, so here again it would
not make sense to use the expected value as the value you should expect.
In (¢), not only is 78 the expected value, but it is highly probable that a
US newborn will live about seventy-eight years. There is less variation
around the mean value in (c) than there is in (a) and (b). In (¢), it is
sensible to use the expected value as the approximate value you’d expect.

In §4.5, we'll examine a kind of evolutionary process, one that involves frequency dependent
selection, in which priors and likelihoods do not exhibit this type of independence.

To keep the example simple, I assume thar lifespans come in whole numbers of years. This permics
the expected value to be expressed as a summation over discrete quantities. If we take time to be a
continuous quantity, the expectation will be an integral.



20 Evidence
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Figure 1.2 Three possible distributions of longevities. Each has the same expected
value, seventy-eight years.

Induction

One of the important contributions that Bayesianism has made tw
understanding scientific reasoning is that it has thrown light on the
traditional idea of learning by induction. Induction, as I use the term,
means making an inference about a population based on a sample drawn
from it. The inference may concern what #he next object sampled will
probably be like, or what all the objects in the population are probably
like. There is a lot more to scientific reasoning than inductive sampling,
but it is enlightening to see what induction looks like through Bayesian
lenses.

Here is a seemingly plausible principle of inductive reasoning that

Reichenbach (1938) called the straight rule:

If you toss a coin # times and 4 of those tosses come up heads, infer that Pr(the
coin lands heads | the coin is tossed) = 4/x.

This rule is not the only one to consider. For example, Laplace (1820)
described a rule of succession:

If you toss a coin # times and 4 of those tosses come up heads, infer that Pr(the
coin lands heads | the coin is tossed) = (44 1)/(n + 2).

The wwo rules disagree (though they disagree less the more you toss).
Which is the right one to use? Reichenbach’s rule looks simple and it
seems to “go by the evidence,” while Laplace’s seems to introduce a funny
correction to what the evidence is saying. Is this a good reason to prefer
Reichenbach to Laplace? Bayesianism provides a framework for answering
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this question. But, more importantly, Bayesianism exposes a deficiency
present in both rules; there is a kind of assumption that neither rule makes
explicit but that needs to be in place if any such rule is to make sense.
Notice that both rules draw a conclusion about the value of a posterior
probability, based on the evidence at hand, but neither rule states values
for any prior probability. Bayesianism asserts that this is magical thinking.
The observations alone cannot give you a posterior probability; you need
to have a prior probability as well. A central thesis of Bayesianism is: no
probabilities our without some probabilities in.

Laplace was well aware of this point. He identified an assignment of
prior probabilities that allowed him to prove that the rule of succession is
correct. Let p be the probability of heads on each toss. We assume that
tosses are independent of each other; results on earlier tosses don’t affect
the probability of heads on later ones. Laplace’s assumptions about prior
probabilities include the postulate that p has the same chance of falling
between 0.1 and 0.2 as it has of falling between 0.8 and 0.9 and that its
chance of falling between 0.3 and 0.6 is the same as its chance of falling
between 0.4 and 0.7. Perhaps it sounds strange to assign a probability to a
probability; if so, think of p as a physical property of the coin, perhaps
one that concerns how symmetrical it is. In any event, to fully describe
how Laplace conceived of the prior probabilities associated with p, we
need to think about the fact that there are infinitely many values that
p might have. This means that Laplace can’t express his postulate about
prior probabilities by saying that all point values of p have the same
probability. If they all have a probability of zero, they sum to zero; and if
they all have a positive value, they sum to infinity. What is required is that
they sum to unity. The solution is to shift from talk of probability to talk
of probability density, an idea depicted in Figure 1.3. Densities take values
from zero to infinity. The prior density represented in the figure always
has a value of 1, so the area under this density curve has a value of unity.
Probabilities are areas under density curves. Laplace’s assumption was
that the prior density curve is flat. Each point value for p has a probabilicy
of zero and a probability density of 1."

According to this prior density curve, the expected value of p is 1.
Notice that the curve is symmetrical around p = 3. Imagine a factory that
manufactures coins according to this prior density function. A tenth of

19 Laplace thought that this assumption is justified by the principle of indifference, which we'll
examine in the next section. Here we’ll simply examine the assumption’s consequences.
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Figure 1.3 A flac prior density distribution for p and the non-flat posterior density
occasioned by observing one head in four tosses. The prior expected value of p is 0.5;
given this prior, the posterior expected value of p is 0.33.

the coins it produces have 0 < p < 0.1, a tenth have 0.1 < p < 0.2, and
so on. So the average coin produced from this factory has a value of p = w
If you draw a coin at random from this prior distribution, and if you
allow yourself to think of the expected value of p as the value you should
expect p to have (thus setting aside the previous section’s warning about
how expected values should be interpreted), you can say that Laplace’s
assumption about priors entails that you should expect the coin to be fair

before you have tossed it even once. This vindicates what the rule of
(h+1)
(n+2) =
understand what happens when you start tossing the coin. Does Laplace’s
rule give correct values for the expected value of p, conditional on the
observations you have made? Surprisingly, the answer is yes.

We already know from the gremlins example that the hypothesis with
the highest likelihood need not be the one with the highest posterior
probability. The reason is that the prior probability is an “anchor”; the
observations can lead the posterior probabilities to depart from the priors,
but the priors still influence what values those posterior probabilities will
have. If you obtain one head in four tosses, you have some evidence that
the expected value of p is lower than w But this does not permit you to
ignore the prior expected value. This is why the posterior expectation

succession says when / = »# = 0; in this case, w The next step is to

moves away from the prior value of 1 in the direction of £ = 1 and ends
up somewhere in between, with a posterior expectation of w How much
of a shift the rule of succession tells you to make depends not just on the
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frequency of heads in the observations, but on the absolute number of
tosses. Observing one head in four tosses occasions a smaller shift away

from 1 than observing 100 heads in 400 tosses. The posterior expectation
101

in the former case, as just noted, is L while that in the latter case is 202-

Laplace’s rule is correct if you start with a flat prior density and you
think that the proper target of this inductive rule is to infer the expected
value of p. Where does that leave Reichenbach? Perhaps there is another
assignment of prior probabilities that justifies the straight rule. Let’s
investigate this question by initially changing the subject. Instead of
thinking about the probabilities of hypotheses, let’s think about their
likelihoods. Suppose we observe five heads in twenty tosses of the coin.
What value of p = Pr(the coin lands heads|the coin is tossed) will
maximize the probability of the observations, again assuming that tosses
are independent of each other? The maximum likelihood estimate of this
parameter is p = Wm = 0.25. The likelihood of this hypothesis is depicted
in Figure 1.4, relative to the observations we actually made (five heads in
twenty tosses) and also with respect to other observations that could have
occurred but did not. The figure also represents the likelihood of
the hypothesis that p = 2 relative to different possible data sets. Note that
the hypothesis p = § says that the actual observations were more probable
than the hypothesis p = 2 says they were. In fact, the p =  hypothesis
makes the data more probable than any assignment of a point value to
p does; it provides the estimate of maximum likelihood. The maximum
likelihood estimate of p is just the sample frequency; it doesn’t martter

p='a p=Y
Pr(data | p=7?)

0 5 10 15 20
Number of heads in twenty tosses
Figure 1.4 When the coin lands heads in five of twenty tosses, the maximum likelihood

estimate of p = Pr(the coin lands heads | the coin is tossed) is p = 1. The likelihood of the
estimate p = 2 is lower.
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whether you observe one head in four tosses, or five in twenty, or 100 in
400 — the maximum likelihood estimate is the same.

The fact that the hypothesis p = 1 has a higher likelibood than the
hypothesis p = 3 does not say anything about their probabilisies. If those
hypotheses are to have posterior probabilities, they must have priors. So
what priors should we assign? More specifically, is there a prior density
distribution of values for p that allows Reichenbach’s rule to always
generate the right value for the posterior expected value of p? Surprisingly,
the answer is #o. Notice that the straight rule pays no attention to the
prior values; it simply goes by the maximum likelihood estimate. There is
no prior distribution that legitimizes this policy.'! The rule of succession
is typical in this regard; it moves the estimate from the prior expected
value of { towards the maximum likelihood estimate of 4/, but does not
go all the way there. The only case in which the rule of succession yields a
value that is identical with the maximum likelihood estimate is when 4 /7 =
0.5; in this case (5 + 1)/(n + 2) also equals 0.5. The general point is that
every prior distribution will have a prior expected value, and this will
always exert some influence on what the posterior expected value is. The
straight rule cannot be given a Bayesian foundation.'”

Trouble in Paradise

If all scientific inferences resembled the problem you face when your
patient’s tuberculosis test has a positive result, Bayesianism would be a
thoroughly adequate philosophy of scientific inference. Before describing
the fly in the ointment (in fact, there are two), let us examine some
features of this example.

In the example of tuberculosis diagnosis, the two hypotheses are
exclusive and exhaustive.!® This is why Pr(S has tuberculosis) + r(S does
not have tuberculosis) = 1.0. What is more, when you assign values to
these prior probabilities, you are not merely reporting your subjective
degree of cerrainty. You can point to frequency data concerning how

"' Or, more precisely, no prior distribution that obeys the axioms of probability permits this. A flat
improper prior (which goes outside the unit interval) can do so.

12 Not that Reichenbach thought chac the straight rule requires a Bayesian justification. Rather, he
was impressed with the fact that the straight rule converges on the true value of p as the daca set is
made large without limit. This property, which statisticians call sutistical consistency, will be
discussed in §1.7 and §4.8.

'3 I assume here that your patient, S, exists and that this is not up for test.
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often people have tuberculosis in the population to which § belongs.
Of course, S belongs to many populations; for example, suppose that
S lives in the USA, lives in Wisconsin, and lives in Madison, and that
the frequencies of tuberculosis in these three populations differ. Phil-
osophers often recommend considering the narrowest population on
which you have frequency data, but I don’t think that that is the only
consideration. It matters whether you can regard § as being drawn at
random from this or that population; if you can, the frequency data for
that population provide a defensible prior. Although there are interesting
issues here as to what the best assignment of value to the prior probability
is, the point I want to emphasize is that frequency data are relevant and
available.

The same virtue attaches to the values assigned to the likelihoods
Pr{+ result| tuberculosis) and Pr(+ result|no tuberculosis). These are
not numbers pulled from thin air, nor are they mere introspective reports
about your attitudes. Rather, they too can be justified by peinting to
frequency data. It is a familiar fact that scientific instruments, including
the devices employed in medical diagnosis, are used to test hypotheses.
The point of relevance here is that those devices are themselves tested.
You can see how well a tuberculosis test performs by giving the test to a
large number of people whom you know have tuberculosis and also to a
large number whom you know do not. Frequencies within large samples
provide a substantial justification for one assignment of values to the
likelihoods rather than another.

In saying this, I am not denying the main lesson of the previous
section. Frequency data do not by themselves deductively entail an
assignment of value to a posterior probability. The fact that p = 4/# is the
maximum likelihood estimate for a coin’s probability of landing heads
does not entail that this is the most probable value; still less does it entail
that this is the true value. It is useful to think of the probability one is
trying to estimate as a theoretical quantity; the evidence one uses to make
this estimate is an observed frequency. The observations do not deduct-
ively entail the theory. However, with large samples, almost any prior
probability will produce the same, or nearly the same, assignment of
posterior probabilities. This is what Bayesians mean when they refer to
the swamping of priors. Two agents can begin with different prior prob-
abilities, but if they both update by using a sufficiently large data set, their
posterior probabilities will be very close; the difference in priors has
washed out. In this case, you will not go far wrong by ignoring whatever
prior probabilities you start with and just using Reichenbach’s straight
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rule. The rule is invalid, as noted, but the values it delivers will usually be
sensible for large random samples.

It is important to recognize how important it is for prior probabilities
to be grounded in evidence. We often calculate probabilities to resolve our
own uncertainty or to persuade others with whom we disagree. It is no
good assigning prior probabilities simply by asking that they reflect how
certain we feel that this or that proposition is true. Rather, we need to be
able to cite reasons for our degrees of belief. Frequency data are not the
only source of such reasons, but they are one very important source. The
other source is an empirically well-grounded theory. When a geneticist
says that Pr(the offspring has genotype A | mom and dad both have the
genotype Aa) =1, this is not just an autobiographical comment. Rather, it
is a consequence of Mendelism, and the probability assignment has
whatever authority the Mendelian theory has. That authority comes from
empirical data.

I don’t want to overstate my praise for the objectivity of the quantities
that figure in the Bayesian answer to the question of whether your patient
has tuberculosis. Skeptical questions can always be pursued back to a
point where you do not know how to answer, or you “answer” by
stamping your foot and insisting on the legitimacy of assumptions that
cannot be further justified. This is true for any claim about knowledge or
justification; the present context is no exception. But to insist that the
Bayesian solution to the diagnostic problem is “purely subjective” is to
mistake the part for the whole. The objective component is substantial
and compelling.

There is a world of difference between this quotidian case of medical
diagnosis and the use of Bayes’ theorem in testing a deep and general
scientific theory, such as Darwin’s theory of evolution or Einstein’s general
theory of relativity. The difference may be, at the end of the day, a matter
of degree, bur stll the difference is profound. When we assign prior
probabilities to these theories, what evidence can we appeal to in
justification? We have no frequency data as we do with respect to the
question of whether S has tuberculosis. If God chose which theories to
make true by drawing balls from an urn (each ball having a different theory
written on it), the composition of the urn would provide an objective basis
for assigning prior probabilities, if only we knew how the urn was
composed. But we do not, and, in any event, no one thinks that these
theories are made true or false by a process of this kind. As I mentioned,
frequency data are not the only convincing justification that an assignment
of prior probabilities can have. An empirical theory, like Mendelism, that
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is itself justified by observations can provide such probabilities. But
this possibility does not bear fruit in the case of Darwin’s theory or
Einstein’s; we have no empirically well-grounded theory of the processes
by which theories like Darwin’s or Einstein’s are made true. In fact, maybe
there is no such theory; perhaps Darwin’s and Einstein’s theories
simply are true (or not), with no chance process leading to the one
outcome or the other.

Although frequency data and a well-supported empirical theory can
provide a basis for assigning prior probabilities, the principle of indif-
ference cannot. This idea used to be a cornerstone of Bayesianism, but it
is rare for contemporary Bayesians to have anything good to say about it.
The principle says that if you are completely ignorant about which of a set
of exclusive and exhaustive propositions is true, that you should assign
them equal probabilities that sum to one. The problem with this principle
is that there are multiple ways to slice the logical space into parts, which
means thar the same proposition can receive different prior probabilities
depending on how the cake is sliced. It once was hoped that logic and
language would somehow ground the principle of indifference, but this
no longer seems even remotely plausible; logic and language do not
furnish prior probabilities, at least not if prior probabilities are to have
some authority in arguments in which people disagree. So do not fall into
the trap of reasoning thus:

Either God exists or he does not.
Therefore, Pr{Godexists) = Pr(God does not exist) “w.

This is a trap because the pie can also be divided in three:

Either God exists and Christianity is true, God exists and
Christianity is false, or there is no God.
Therefore, Pr(God exists and Christianity is true) = Pr(God exists

and Christianity is false) = Pr(God does not exist) Hw.

If the principle of indifference licenses the first inference, why does it not
license the second? And if it licenses both, it has lapsed into contradiction.

Laplace appealed to the principle of indifference to justify the prior
density distribution he used to derive the rule of succession, so the
dilemma of embracing either arbitrariness or contradiction arises in this
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context as well. Bertrand’s paradox provides a nice illustration of how the
principle of indifference goes wrong in the continuous case. Suppose I tell
you that a cube manufactured by a certain factory has edges that are
between 1 and 2 inches in length. If this is all you know abourt the cube,
you might conclude that all possible lengths between 1 and 2 have the
same prior density (= 1). This implies that

Pr(the length of an edge is between 1 and 1.5 inches)

1

= Pr{the length of an edge is between 1.5 and 2 inches) = 5

However, the information I gave you also allows you to see thar each side

of the cube has an area that is somewhere between 1 and 4 square inches,

and this might suggest that all possible areas between 1 and 4 have the
same prior densities (= 1). This entails that

Pr(the area of a side is between 1 and 2.5 square inches)

= Pr(the arca of a side is between 2.5 and 4 square inches) = W
The problem is that assigning equal priors to the lengths an edge
might have contradicts assigning equal priors to the areas a side
might have.

The questions just explored concerning the assignment of values to
prior probabilities also attach to likelihoods, or rather they attach to some
of them. In the case of S and whether he has tuberculosis, assignments of
values to Pr(-+ test result| S has tuberculosis) and to Pr(+ test result|S
does not have tuberculosis) can be justified. The problem is that only half
of this is true in many other testing situations. For example, when Arthur
Stanley Eddington tested the general theory of relativity (GTR) by
examining how much bend there was in starlight during a solar eclipse, he
was able to ascertain a value for Pr(observation | GTR). But what value
could he assign to Pr(observation | notGTR)? The negation of the GTR is
what philosophers call a cazchall hypothesis. There are many specific
theories (77, 75 ..., T,) that are incompatible with the GTR. The
likelihood of 70tGTR is the average likelihood of these specific alterna-
tives, weighted by the probabilicy they have conditional on the GTR
being false:

Pr(observation | notGTR) = MN, Pr(observation | ;) Pr(T; | notGTR).

Evidence 29

Some alternatives to the GTR have not even been formulated yet, so it is
hard to see how anyone can say what their likelihoods are. And what
objective meaning could there be in saying that various alternatives have
this or that probability of being true if the GTR is false? If the likelihood
of the catchall hypothesis 70rGTR cannot be calculated, there is no saying
whether Eddington’s observation confirms the GTR, since

Pr(GTR | observation) > Pr(GTR) if and only if
Pr(observation |GTR) > Pr(observation | notGTR).

As it happens, Eddington did not test the GTR against its negation;
rather, he tested it against Newtonian theory, which made a concrete
prediction about how much the light in the eclipse should bend. It turned
out that

Pr(observation | GTR) >> Pr(observation | Newtonian theory).

Unlike “S has tuberculosis” and ““S does not have tuberculosis,” the GTR.
and Newtonian theory are not exhaustive. Of course, if we think of the
likelihoods as merely reflecting subjective degrees of confidence, someone
might assert, as an autobiographical remark, that the GTR has a higher
likelihood than its negation; but someone else, with equal autobio-
graphical sincerity, could assert the opposite. And both would be right if
the probabilities involved were merely subjective. In science, we want
more than this.'

Let me comment, finally, on Pr(observation), the unconditional
probability of the evidence. In the case of the tuberculosis test, the
unconditional probability of a positive test result can be estimated
empirically. You can estimate how often people have tuberculosis and
how often not; and you can estimate how often people in each group who
take the test have positive test results. This allows you to estimate the
value of Pr(+ test result), since this quantity is defined as Pr(+ test
result | tuberculosis) Pr(tuberculosis) + Pr(+ test result | no tuberculosis)
Pr(no tuberculosis). But what of the comparable quantity in Eddington’s
test? What is the unconditional probability that starlight bends a certain
amount during an eclipse of the type that Eddington studied? It isn’t true
that the prior probabilities on G7R and 70tGTR are reflected in the fact
that a given proportion of the physical systems that populate our universe

4 Earman (1992: 117) uses the Eddington example to illustrate the problem of assigning likelihoods
to catchalls.
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are relativistic while the rest are not. We can’t estimate Pr(observation) by
seeing how often starlight bends during eclipses. This reveals, incidentally,
why it can be misleading to say that Pr(observation) describes how
“unsurprising” the observations are. Even if it is true that starlight afways
bends the same amount during eclipses of the type that Eddington
observed, this does not mean that Pr(observations) =~ 1. The relevant
question is what the average probability is of this observation under each
hypothesis considered, where the average is taken by using the prior prob-
abilities of the hypotheses.

Philosophical Bayesianism, Bayesian statistics, and logic

Bayesian philosophers of science assign prior probabilities to scientific
theories like the GTR and do not hesitate to assign likelihoods to catchall
hypotheses — for example, to the GTR’s negation. They concede that
there is a subjective element in these assignments, though they hasten to
note that there are numerous subjective elements in frequentism as well
(we will examine these in due course). Bayesian philosophers think that it
is a matter of intellectual honesty to acknowledge subjective elements
when they intrude. They arc inevitable. What could justify pretending
that they are not there?

Bayesian statisticians in their professional work rarely assign prior
probabilities to “big” theories like the GTR and they rarely assign like-
lihoods to catchalls like #otGTR. But both these practices are standard in
connection with hypotheses that are more modest. For example, when
Bayesians consider the genealogical relationships that humans, chimps,
and gorillas might bear to each other (§4.8), they often assign equal priors
to the three competing hypotheses (HC)G, H(CG), and (HG)C. Given
the observed similarities and differences that those three species exhibit, it
is possible to compute the likelihoods of the three hypotheses and then to
compute their posterior probabilities. The effect of assigning equal priors
is that all the real work is done by the likelihoods; if the priots are equal,
the hypothesis of greatest likelihood must also be the hypothesis that has
the greatest posterior probability. Bayesians might just as well say that
what interests them here is the likelihoods and make no judgment at all
about priors or posteriors. A similar comment applies when Bayesian
statisticians perform semsitivity analyses; by examining various assignments
of priors, they calculate how changing the priors affects the calculated
posterior probabilities. Here again, what one is learning about are the

likelihoods of the hypotheses under study; given the likelihood ratio of
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H,; to H>, changing the ratio of priors will bring with it changes in the
ratio of posterior probabilities. Describing these changes is just a way of
describing the likelihood ratio.

Even though Bayesian statisticians often soft-pedal their assignments of
prior probabilities to hypotheses, there is a deeper commitment on the
part of Bayesians that concerns how likelihoods are sometimes computed.
If a coin is tossed twenty times and seven heads are obtained, it is perfectly
clear what the probability of that outcome is according to the hypothesis
that the coin is fair (i.e., that p = 1). But consider the hypothesis that the
coin is not fair: i.e., that p # 1. What is the probability of seven heads in
twenty tosses according to this catchall? There are many ways the coin
might fail to be fair, which correspond to different values of p, and these
different values of p confer different probabilities on the observations. The
likelihood of the hypothesis that p # 1 is an average over the likelihoods of
all the point values that p might have if it differs from §. This average
takes the form of the following summation:

1
Pr(7 heads | p # 5 & 20 tosses)
= MUN Pr(7 heads|p = i & 20 tosses)

1
XPr(p=7|p mmM & 20 tosses).

The hypothesis that p # w is, in this respect, just like the negation of the
GTR. Notice that priors on different values of p do not occur in this
expression, but something rather like them does. As we will see, fre-
quentists also consider hypotheses like p # 1, but they do not compute the
average likelihoods of those hypotheses. The handling of such hypotheses
(which statisticians call “composite”) is a fundamental divide that sep-
arates Bayesians from frequentists.

For Bayesian philosophers, rationality does not require you to deny the
subjective elements that inevitably intrude in inference; rather, the point
is to regulate that subjectivity in the right way. For them, being rational
has to do with how you change what you believe as new evidence arrives;
your starting point is not something that Bayesian philosophers feel they
need to address. Bayesian philosophers often see Bayesianism as analogous
to deductive logic in this respect (Howson 2001). Deductive logic does
not tell you what you should take your premises to be; logic is solely in
the business of giving advice on what follows from them. So, the fact that
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priors and likelihoods are sometimes subjective is just a fact of life with
which we all have to deal. Subjective Bayesians see themselves as facing
these facts squarely in the face; they think their critics are ostriches
burying their heads in the sand.

If Bayesianism is simply the logic that each of us should use to regulate
our degrees of belief, the criticisms I have described of that philosophy do
not apply. But an epistemology should do more than this. We need to
identify which of our probability assignments can be justified interper-
sonally. And we also need to see if there are objective considerations that
Bayesians ignore. The first of these tasks leads to likelihoodism; the
second will lead us to consider frequentist ideas.

1.3 LIKELIHOODISM

Strength in modesty

The problems with Bayesianism just described suggest a fallback position
that preserves much of what Bayesianism has to offer while abandoning the
elements of the philosophy that are too subjective. This is likelihoodism.
When prior probabilities can be defended empirically, and the values
assigned to a hypothesis’ likelihood and to the likelihood of its negation are
also empirically defensible, you should be a Bayesian.'> When priors and
likelihoods do not have this feature, you should change the subject. In
terms of Royall’s three questions (§1.1), you should shift from question
(2), which concerns what your degree of belief should be, to question (1),
which asks what the evidence says. The likelihoodist does not answer this
question by using the Bayesian concept of confirmation; you don’t ask if
the evidence raises, lowers, or leaves unchanged the hypothesis’ probability.
Rather, you compare only those hypotheses to cach other that have
determinate likelihoods. For example, instead of trying to compare the
GTR to its own negation, you do what Eddington did: You compare the
GTR with a specific alternative theory, Newtonian theory, and you use
the law of likelihood (so named by Hacking 1965) to interpret the data:

Law of likelihood: The observations O favor hypothesis /; over hypothesis H if
and only if Pr(O|H;) > Pr(O| Hz). And the degree to which O favors H; over
H, is given by the likelihood ratio Pr(O| H;)/Pr(O | H).

15 Sometimes we can say what the value is of Pr(O| H) without needing empirical information. For
example, we know a priori (if we know anything a priori) that Pr(che next ball drawn will be
green | 20 percent of the balls in the urn are green and the draw will be random) = 0.2.
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The concept of favoring used in the law of likelihood involves a three-
place relation that connects two hypotheses and a body of evidence. One
also might call it the relation of differential support, although this ter-
minology is apt to mislead; it may encourage the impression that the law
of likelihood says that O supports H; to one degtee, that O supports H
to another, and that the question is whether the first is greater than the
second. This is not what the law means. According to likelihoodism, there
is no such thing as the degree to which O supports a single hypothesis.
Support is essentially contrastive.

The law of likelihood contains two ideas: a gqualitative assessment of the
bearing of the observations on the two hypotheses (expressed by an
inequality) and a gquantitative measure of how strongly or weakly the
observations favor one hypothesis over the other (expressed by the like-
lihood ratio). The quantitative component goes beyond what the quali-
tative component says, just as the choice of a measure of degrec of
confirmation goes beyond the Bayesian definition of qualitative con-
firmation. And a similar question applies: even assuming that the quali-
tative law of likelihood is true, why should you use the likelihood ratio as
your measure? The likelihoodist wants a measure of favoring that does not
require any assignment of values to prior or posterior probabilities, or any
assignment of values to the likelihoods of catchalls (if those values can’t be
defended by evidence), so that precludes using the possible definitions of’
degree of confirmation mentioned in $1.2. But why not define favoring in
terms of the likelihood difference, Pr(QO| H;) — Pr(O| H3)? One reason is
suggested by a pattern that arises when there are multiple pieces of evi-
dence that are independent of each other, conditional on each of the two
hypotheses considered. Suppose, for example, that

Pr(O;| H;) = 0.99, for each of the 1,000 observations Oy, ..., Oy ggg-
Pr(O;| H2) = 0.3, for each of the 1,000 observations Oy, ..., O;g0-

With conditional independence, we have

Pr(O; & ... &0 00| Hi) = (0.99)"°%
ND& Nu\AON mm .. mwh QPQQQ _N«va = Ao.wvrooo.

The likelihood of each of these hypotheses, relative to the 1,000 obser-
vations, is very close to zero, so their difference is tiny; however, the ratio
of the two likelihoods is (33)"°%, which is huge. Since each of these 1,000
observations favors H, over H,, the 1,000 observations should do so
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more powerfully than any of them does singly. This recommends the
likelihood ratio over the likelihood difference as a measure of strength of
evidence. Can it be shown that the likelihood ratio is the best of all
possible measures? Perhaps a compelling argument for this stronger
conclusion can be given, or perhaps this part of the law of likelihood
should be regarded as a postulate to be judged by the intuitiveness and
usefulness of its applications. In any event, there is a feature of this
example that will come up later in this chapter and in subsequent chapters
as well: A probabilistic hypothesis such as H; can do an excellent job
predicting what happens in each of 1,000 experiments, in each case
assigning a very high probability to the outcome that in fact takes place.
Yet, the likelihood of the hypothesis goes down and down as one triumph
is laid upon another. This underscores the fact that it is the relationship
between the likelihoods of different hypotheses that matters, not the
absolute value of any single hypothesis’ likelihood.

Since likelihoodism agrees that Bayesianism makes sense in many cases,
we can consider how the Bayesian concept of confirmation is related to the
law of likelihood’s qualitative notion of favoring when both uncontro-
versially apply (e.g., in the example of tuberculosis diagnosis discussed in
§1.2). For O to confirm Hj, it must be true that Pr(O|H;) > Pr(O]
notH ). The observation provides Bayesian confirmation of H; precisely
when H; has a higher likelihood than its negation. In contrast, the
favoring relation posited by likelihoodism need not pit H; against its own
negation; the question is whether 7, has a higher likelihood than ), for
some alternative hypothesis H that is of interest. Here’s a simple example
that illustrates how O can provide Bayesian confirmation of /H; without
O's favoring H; over a hypothesis H that is incompatible with H:

Example I: Let O = the card is red, H; = the card is a heart, H, = the card is a
diamond. Then Pr(O|H;)) = 1, Pr(O|notH;) = w, and Pr(O|H,) = 1.

And here’s an example that exhibits the opposite pattern in which O does
not provide Bayesianism confirmation of H; though it favors H; over a
hypothesis /, that is incompatible with H:

Example 2: let O = the card is a 7, H; = the card is a heart, A, = the card is the

Ace of Spades. Then Pr(O| H) = _Pw = Pr(O| notH,), and Pr(O| H,) = 0.

The likelihoodist concept of favoring describes what the evidence says
about the competition between any two hypotheses that both probabilify
the data at hand. The Bayesian concept of confirmation addresses a
special case; it describes what the evidence says about the competition
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between a hypothesis and its own negation. Both questions are of interest
from a Bayesian point of view. On the other hand, if Bayesianism has the
problems described in §1.2, we need the concept of favoring for those
problem cases, since Bayesian confirmation will not be able to do the
needed work.'®

Three objections to likelihoodism

The law of likelihood is a proposal; it is not a mathematical theorem (like
Bayes’ theorem). The law proposes that the informal concept of favoring
(or differential support) be explicated in terms of the formal concept of
likelihood comparison. To judge this proposal, we must determine how
well it conforms to, and renders precise and systematic, our use of the
informal concept. Our goal here, familiar from other projects of philo-
sophical explication, is not to exactly mimic the everyday concept, which
may contain various ambiguities, opacities, incoherences, indeterminacies,
and even contradictions (Carnap 1947, 1950). The philosopher’s job is
not the same as the lexicographer’s.

The previous paragraph conveys a formula that philosophers often
offer that describes how the definitions they propose ought to be judged,
and there is something to it. However, something more is needed
with respect to the case at hand. Something important would be missed
if the law of likelihood were judged solely on the basis of how it
clarifies the meaning of the English word “likely.” As already noted,
Fisher’s use of the term “likelihood” is radically at variance with
ordinary usage. However, this is not an objection to Fisher’s idea, just a
comment on the infelicity of his choice of lbel. What matters abourt the
law of likelihood is whether it isolates an epistemologically important
concept. The same is true of the likelihoodist’s use of terms like
“favoring” and “‘support.” A formal proposal that describes how an
informal concept should be understood is to be judged by the light it
throws on the informal concept, but it also should be judged by the lighe
it throws, _umlon_.i

' There is more to likelihoodism than I have described here. For example, there is the likelihood
principle. For discussion of what this principle means and how it is related to the law of likelihood,
see Grossman (unpublished). One difference is that the law of likelihood describes the bearing of a
single data set on two hypotheses while the likelihood principle says when two darta sets are
evidentially equivalent.

7" A similar poinc was already visible in the discussion of what “reliability” means in §1.2.
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The need to restrict the law of likelihood

Suppose you are Madison’s top meteorologist. You gather data on the
present weather configuration in the Midwest and (let us suppose) you
have at hand a true theory of how weather systems change. Your job is to
make a weather forecast. Based on the information you have, you infer
that the probability of snow in Madison tomorrow is 0.9. It would be
natural for you to express this by saying that your information supports the
prediction that there will be snow; and it also would be natural to say that
your information favors the hypothesis that it will snow over the
hypothesis that it will not. But here the support and the favoring reflect
facts about the probabilities of hypotheses not about their likelihoods.
What your data and theory tell you is that

Pr(snow tomorrow | present data & theory) = 0.9

> Pr(no snow tomorrow | present data & theory) = 0.1.

You are not computing whether

Pr(present data | snow tomorrow)>Pr(present data|no snow

tomorrow).

Your data and theory favor your weather prediction by making it probable,
not by giving it a likelihood higher than that of some competing hypothesis.

An even starker example is provided by the following example. Suppose
you want to predict whether the next card dealt to you will be a heart. The
dealer looks at this card and, before he turns it over and places it in front
of you, says, “This is the Ace of Hearts.” You know that the dealer is
truthful. What, then, is your epistemic situation? You're interested in
ascertaining the truth value of the hypothesis H = the next card is a heart.
From whart the dealer says, you know that proposition O is true where

O = the next card is the Ace of Hearts. Should you compute the likeli-
hood of H or the probability of /? The likelihood of H is:

PrO|H) = W

The probability of H is
Pr(H|O) = 1.0.

Surely you should focus on the probability. And it would not be an abuse
of language to say that the dealer’s comruent strongly supports the
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hypothesis that the next card will be a heart; what the dealer says favors
that hypothesis over the hypothesis, say, that the next card will be a spade.

These examples and others like them would be good objections to
likelihoodism if likelihoodism were not a fallback position that applies
only when Bayesianism does not.”® The likelihoodist is happy to assign
probabilities to hypotheses when the assignment of values to priors and
likelihoods can be justified by appeal to empirical information. Like-
lihoodism emerges as a statistical philosophy distinct from Bayesianism
only when this is not possible. The present examples therefore provide no
objection to likelihoodism; we just need to recognize that the ordinary
words “support” and “favoring” sometimes need to be understood within
a Bayesian framework in which it is the probabilities of hypotheses that are
under discussion; but sometimes this is not so. Eddington was not able to
use his eclipse data to say how probable the GTR and Newrtonian theory
each are. Rather, he was able to ascertain how probable the data are, given
each of these hypotheses. That’s where likelihoodism finds its application.

How can a preposterous hypothesis be extremely likely?

The gremlin example invites the following objection to the law of like-
lihood: The hypothesis that there are gremlins bowling in the attic has a
likelihood that is as high as a likelihood can be; it has a value of 1. So, the
law of likelihood says that the gremlin hypothesis is very well supported.
Buc this is silly. The noises we hear do not make it at all likely that there
are gremlins up there bowling. This is not a well-supported hypothesis at
all. Hence, the law of likelihood is false.

The complaint that the gremlin hypothesis can’t be “likely” or “well
supported” is easily explained by the fact that the speaker assigns the
gremlin hypothesis a very low prior. Imagine that the objector has
inspected thousands of attics and has never seen a gremlin and that
reputable authorities have assured him that gremlins are a myth. When he
arrives at your house, his prior that there are gremlins bowling in your
attic is low; once he hears the noises, his probability that there are

'8 Fitelson (2007) uses this kind of problem to argue that the law of likelihood is false and should
be modified to read as follows: O favors H, over H, if and only if Pr(O| H;) > Pr(O| H,) and
Pr(O\| notH,;) < Pr(O| notH). This principle does not follow from the Law (notice that both are
biconditionals), though if the right-hand side of Fitelson’s modified principle is true, so is the
right-hand side of the law of likelihood. Notice also that using Fitelson’s principle requires one te
have likelihoods for catchall hypotheses, which likelihoodism maintains are often unavailable.
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gremlins up there bowling remains low, though the Bayesian must con-
cede that the observation increases the hypothesis’ probability.'® This is
why the objector judges that the gremlin hypothesis is not “likely,” by
which he means that it is not very probable. Fair enough, but that is not
an objection to the law of likelihood. As noted, we need to recognize that
Fisher’s terminology was not well chosen. The terms “likely” and
“probably” are used interchangeably in ordinary English, but that is not
an objection to the law of likelihood.

Although Bayesians sometimes make this objection to the law of likeli-
hood, the fact of the matter is that Bayesianism is committed to the view that
likelihoods are the one and only vehicle by which observations can change
the probabilities we assign to hypotheses. This was the point I discussed
in connection with proposition (6). Bayesians as well as likelihoodists need
a word to use in describing the epistemological significance of the fact that
Pr(E| HY > Pr(E| notH). The law of likelihood uses the word “favoring,”
and “differential support” might be used here as well. Of course, the law of
likelihood also applies this term in a wider context, namely when one is
comparing H with an alternative hypothesis other than its own negation.
But the point of this term is not to assess the overall plausibility of A but to
describe what a particular observation says about the competition between
H and some alternative hypothesis. The law of likelihood does not say that
the gremlin hypothesis is rendered plausible by the noise you hear.

Edwards (1972) discusses the same sort of objection in connection with
another example. You draw a card from a deck and it turns out to be the
seven of spades. Now consider the hypothesis that each of the cards in the
deck is a seven of spades; this hypothesis has a likelihood of 1.0. In
contrast, the likelihood of the hypothesis that the deck is “normal” is only
u|m. This leads the law of likelihood to conclude that the card you've
observed favors the stacked hypothesis over the normal hypothesis. But
surely, the objection concludes, the stacked hypothesis is not more
plausible or better supported. I leave it to the reader to construct and
evaluate the likelihoodist’s reply.

Likelihoodism and the definition of conditional probability
Likelihoodists think they have a philosophy that comes into its own when

no evidence is available to back up assignments of prior probabilities. But

19 T4 see this, consider the following consequence of Bayes’ theorem: If H entails £ and 0 <
PrEY < 1 and 0 < Pr(H) < 1, then Pr{H|E) > Pr(H).
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how can this be true, given the Kolmogorov definition of conditional

probability (§1.2)? Recall that the definition says that

Pr(O & H)

(K) PrOVH) == s

There, in the denominator on the right-hand side, a prior probability has
popped up, just what likelihoodists say they can do without when they
talk about likelihoods!

The answer to this challenge is that likelihoodists should think of the
Kolmogorov definition as correct only when various unconditional prob-
abilities are “well defined.” When they are not, the concept of conditional
probability can and should be taken to stand on its own; it does not need
to be defined in terms of unconditional probabilities. There are good
reasons for this approach that do not depend on any qualms one might
have about Bayesianism. For example, consider the fact that Kolmogorov’s
(K) says that the conditional probability is undefined if Pr(H) = 0. But
surely there are contexts in which a conditional probability has a value even
though the conditioning proposition has a probability of zero. Suppose 1
make you the following promise: If the coin I am about to toss lands heads,
I will buy you a ticket in a fair lottery in which 1,000 tickets are sold. If the
coin fails to land heads, you will have no ticket, and so you can’t win the
lottery. You know that I am trustworthy, so you conclude that Pr(you win
the lottery | the coin lands heads) = q_oo. However, I then take measures to

ensure that the coin cannotland heads. Maybe I bend the coin, or place it in
a tossing device that ensures tils every time, or maybe I just lock it in a
vault and thereby ensure that the coin can never be tossed. If you buy the
Kolmogorov definition of conditional probability, the information that the
coin can’tland heads should lead you to say that the conditional probability
just stated is not correct. The value is not %w rather, it is not defined.
On the other hand, if conditional probability is a primitive concept, the
conditional probability can have the value given even though the condi-
tioning proposition has a probability of zero (Hajek 2003). This position
has the additional virtue of allowing Pr(the coin lands heads | the coin lands
heads) to have a value of unizy instead of being nor defined.

There is an epistemic point that is also worth considering. We often
know the value of Pr(O| H) even though we have no clue as to the value of
Pr(H). As mentioned in §1.2, we can estimate the value of Pr(+ test
result | tuberculosis) by giving the test to thousands of people whom we

know have tuberculosis. This procedure does not require that we know how
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common or rare tuberculosis is, and so we may be entirely in the dark as to
the value of Pr(tuberculosis). The defender of Kolmogorov’s definition is
right to reply that proposition (K) is not a claim about knowledge; it does
not say that to #énow the value of a conditional probability you first must
Jfind out the values of the two unconditional probabilities cited. (K) asserts a
symmetric mathematical (or logical) dependence, not an asymmetric
epistemic dependence. The right question to ask about Kolmogorov’s (K) is
whether there must exist unconditional probabilities for H¢&O and for H if
there is such a thing as the conditional probability Pr(H| O).

The answer depends on what we mean by probability and on the
example we consider. Bayesians usually adopt the idealization that rational
agents have degrees of belief for all the sentences of their language. The
Bayesian framework is one in which a complete probability function is
deployed over all the sentences in some language. If O;, Oz, ... O, and
H,, H, ... H, are all sentences in the language, then the probability
function assigns a prior probability to each of those atomic sentences and to
all Boolean combinations definable from them (e.g., to the negations of
each and to all disjunctions and conjunctions constructed from this set).
Posterior probabilities are definable from the relevant priors via proposition
(K). This is not the best way to understand what likelihoodists are up to.
According to likelihoodism, the language we speak is far more wide-ranging
than the probability models we use. On a given occasion, we may specify a
value for Pr(O| H}) and for Pr(O| H>), but none for Pr(O| notH,), and
none for Pr(H;) or Pr(H,). We use this partial probability function to do
the needed work. Not only don’t we £now the value of Pr{O| notH)), or of
Pr(H}), or of Pr(H>); in addition, there may be no such values to know.
The model we use does not include these even as unknown quantities.

What likelihoodists mean by probability is not simply that an agent has
some degree of belief. For one thing, the concept of probability needs to
be interpreted more normatively. Pr(O| H) is the degree of belief you
ought to have in O given that H is true. Bur likelihoodists also like to
think of these conditional probabilities as reflecting objective marters
of fact. If Pr(the card is the Ace of Hearts|the card is dealt from this
deck) = &, this is because of the physical composition of the deck and the
physical properties of the process of dealing. When likelihoodists insist
that probabilities must be “objective,” they mean that probabilities must
be grounded in such physical details.”® When the physical processes at

2% The word “objective” used by likelihoodises does not mean what so-called objective Bayesians have
meant by the term: that probabilities must be derivable from logical features of the language we speak.
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work generate frequency data, these data provide evidence we can use to
infer the values of the underlying probabilities.’ .

Is Kolmogorov's (K) the right way to think about conditional prob-
ability when probability is understood in the way thac likelihoodists
propose? If there exists a physical process that leads people with tuber-
culosis who are tested to have a positive test result with a certain fre-
quency, is there also a physical process that leads some people, but not
others, to have tuberculosis? Arguably so, in which case Pr(+ test result |
tuberculosis) and Pr(tubetculosis) will both figure in a useful model. But
now consider Eddington. There was a physical process that led the light to
bend during the eclipse; this is the process that the GTR purports to
describe. But is there, in addition, a physical process whose result was that
the GTR, or some competing theory, became true? Arguably not. If not,
likelihoodists will not include Pr(GTR) in their probability model. This is
why your interpretation of probability should influence whether you
regard Kolmogorov’s (K) as a proper definition or just as a postulate that
is true in favorable circumstances.

Kolmogorov's proposition (K), like Bayes’ theorem, should be
understood as having a certain rider actached. They do not assert that all
the quantities they describe make sense. Rather, each of them should be
understood in terms of the following preface: in any model that uses the
Jfollowing quantities, here is how those quantities must be related. When (K)
is understood in this way, you can see that the following criticism is
misguided: “If you assign a value to a hypothesis’ likelihood, you are
committed to saying that the hypothesis has a prior, whether you know its
value or not.”

The principle of total evidence

Bayesians and likelihoodists have their disagreements, but they agree on
the principle of total evidence. This principle says that you should take
account of everything you know. As stated, this idea is vague, but it gains
precision when it is applied to concrete problems, as we shall see. It is a
“pragmatic” principle in the philosophical sense of that term. This
doesn’t mean that it is something that cynics rather than idealists

2! Although observed frequencies provide evidence concerning the values of probabilities, there are
lots of contexts in which probabilities can’t be defined in terms of (actual or hypothetical)
frequencies; see Sober (1994, 2008b). For this reason, I prefer a “no-theory theory of probability,”
according to which probabilities are theoretical terms that cannot be defined in terms of
observables.
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embrace; rather, the point is that it gives advice about how probabilities
should be used to solve problems. As there are many probability problems,
the principle has many applications, and so the principle may be more
plausible in some contexts than in others. I'll begin by describing a few
settings in which the principle seems to make excellent sense. It will
emerge in the next section that the principle of total evidence is con-
troversial; it constitutes one of the fault lines that separate some central
ideas in frequentism from both Bayesianism and likelihoodism.

Suppose two witnesses provide independent reports about what they
saw at the scene of a crime. And suppose that each is at least minimally
reliable in the sense described in §1.2, meaning that, for some relevant
range of propositions:

Pr(W;(P)| P > Pr(W;(P)|notP], fori=1, 2.

Here W,;(P) means that witness 7 asserts that proposition 2 is true. The
principle of total evidence says that you should take account of the tes-
timony of both witnesses if that is the total evidence you possess. How-
ever, the principle is usually interpreted as saying that more is better than
Jess; you should take account of both testimonies, rather than just one of
them, even if there is more information available than what the two
witnesses say.

Why are two witnesses better than one? If the witnesses agree that P is
true, and the two witnesses go about their business msanwnbﬁm:&vﬁww the
two pieces of testimony discriminate more powerfully between P and notl?
than either of them does by itself, in the sense that

PAWI(P) & Wa(P)|PL _ PAW(P)| 7]

PrIW,(P) & Wi(P) | notP] ~ PrHWi(P) | notP]

> 1, foreach i = 1,2.

This is because

Priw;(P) & W>(P)| P _ Pr(W;(P) | P « Pr{W,(P) | P
PriWw,(P) & W,(P) | notP) Pr(Wi(P) | notP] = Pr[W5(P) | notP)

and each of the ratios on the right is greater than one. This just reflects the
common sense fact that two independent and (at least minimally) reliable

22 There can be (and will be!) a relation of unconditional dependency between what independent
reliable witnesses say, in thac PH{W{(P) | Wi(P)] > Pr{W,(P)]. The relevant notion of independent
witnesses is independence conditional on the proposition reported. PriW,(P) & WAP)| P =
PriW,(P)| P} x PAWLD) | Pl.
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Witness 2 says
P notP

P
Witness 1 says
notP

Figure 1.5 When two independent and reliable witnesses each report on whether
proposition P is true, two yeses provide stronger evidence for P than one, and one
yes provides stronger evidence than zero. Each cell represents the likelihood ratio
Pr(testimony | )/ Pr(testimony | notP) that goes with each of the four possible
testimonies; w > X, ¥ > 2.

witnesses who agree that P is true provide stronger evidence in favor of P
than either witness does alone.”

This example makes it look as if the principle of total evidence is
justified by our hunger for strong evidence. But this can’t be right. For
suppose the two witnesses disagree. If you take both pieces of testimony
into account, you may have no basis at all for discriminating between P
and notP, whereas if you selectively focus on just one witness’s testimony,
you will. The principle of total evidence in this case tells you to resist the
desire for telling evidence; if the total evidence says that you have little or
no basis for discriminating between the two propositions, so be it.

When reliable witnesses reach their judgments independently of each
other (conditional on P’s being true and conditional on P’s being false),
this induces a kind of evidential monotonicity; if there are two witnesses,
two votes for P provide stronger evidence that P is true than one vote
would provide, and one vote provides stronger evidence for P than if
neither witness had asserted that P is true. These comparisons are rep-
resented by the likelihood ratios depicted in Figure 1.5. As simple and
familiar as this fact about multiple independent testimonies is, it is
important to bear in mind that there is no rule written in Heaven that
separate pieces of evidence must be independent. Suppose you are a cook
in a restaurant. The waiter brings an order into the kitchen — someone in
the dining room has ordered toast and eggs for breakfast. You wonder if
this evidence discriminates between two hypotheses — that your friend
Smith placed the order or that your friend Jones did so. You know the

2 This point about multiple witnesses bears on Hume’s analysis of the epistemology of reports about
the alleged occurrence of miracles, on which see Earman’s (2000) book and my review of it (Sober
2004d).
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eating habits of each; the probabilities of different breakfast orders,
conditional on Smith’s placing the order, and conditional on Jones’s
placing the order, are shown in Figure 1.6. These probabilities give rise to
the following curious fact: The order’s being for zoast and eggs favors
Smith over Jones (since 0.4 > 0.1); but the fact that the customer asked
for toast provides no evidence on this question (since 0.5 = 0.5); and the
fact that the customer asked for eggs doesn’t cither (since, again, 0.5 =
0.5). Here the whole of the evidence is more than the sum of its parts.

Figure 1.7 depicts the opposite pattern in which a new set of inclin-
ations is attributed to your two friends. If Smith and Jones are disposed to
behave as described, an order of roast and eggs fails to discriminate
between the two hypotheses (since 0.4 = 0.4). But the fact that the order
included foast favors Smith over Jones (since 0.7 > 0.6), and the same is
true of the fact that the order included eggs (since 0.6 > 0.4). Here the
whole of the evidence is less than the sum of its parts.

Although the principle of total evidence says that you must use all the
relevant evidence you have, it does not require the spilling of needless ink.

Pr(— | Smith) Pr(— | Jones)

Eggs Eggs
—+ —_

+oa o1

Figure 1.6 Smith and Jones differ in their inclinations to place different orders for
breakfast. The breakfast order of toast and eggs provides evidence about which of them
placed the order, although the fact that the order included toast does not, and neither does

the fact that the order included eggs.

Pr(- | Smith) Pr(~ | Jones)
Eggs Eggs
+ - + —
04 03 +104 02
Toast S B Toast e
-102 7 0 —{ 0 04

Figure 1.7 A new set of breakfast inclinations for Smith and Jones. Now the breakfast
order of toast and eggs provides no evidence about which of them placed the order,
though each part of the order favors Smith over Jones.
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It does not require you to record irrelevant information. Consider the two
hypotheses about coin tossing depicted in Figure 1.4. One of them says
that p = X while the other says that p = 3, where p is the coin’s probability
of landing heads. I earlier described the data by saying that there were five
heads in the twenty tosses of the coin. But why am I not obliged to
describe the exact sequence of heads and tails that formed the data? There
are many ways to get five heads in twenty tosses. A proposition that states
just the sample frequency is logically weaker than a description of the exact
sequence (in that the latter implies the former, but not conversely). Isn’t it
a violation of the principle of total evidence to use the sample frequency
as a description of the data?

If we represent strength of evidence by the likelihood ratio, the answer
is no. Consider each of the specific sequences in which there are five heads
in twenty tosses. The two hypotheses we are considering (p =L and p =2)
agree that each of these exact sequences has a probability of Nmﬁ -2 >
though they disagree about what the true value of p is. The likelihood
ratio of p =} to p = 2, relative to a description of the exact sequence of
heads and tails we observe, has the value:

"

) _ = 310,

Pr(exact sequence |p = ¢
Pr(exact sequence|p =2) @vm@va

If there are V exact sequences that can produce five heads in twenty tosses®*

the probability of obtaining some sequence or other in which there are five
heads in twenty tosses has a value of Zkum a — \VG. Using this logically
weaker description of the data, we obtain the following likelihood ratio:

Pshadslp=h  NO'Q” Q" _ .,

L
Pr(5 heads | p = 2) Z@VMQVG ENOK

Notice that the Vs have cancelled. There is no need to use the logically
stronger description of the data that states the exact sequence of heads and
tails, since it makes no difference to the likelihood ratio (Fisher 1922b;
Hacking 1965: 80-1). In this sense, the sample frequency is a sufficient
statistic. Notice the role played by the likelihood ratio in this argument; if
you represented weight of evidence in some other way (e.g., via the

24 . - : : e
IV, the number of specific sequences in which there are 2 successes in 7 trials, is calculated by the
formula for A

n

§v. meaning from n objects choose m; N = n!/m!(n — m)!.
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likelihood difference), maybe N would not disappear. Notice also how
powerfully the data favor one hypothesis over the other, even though both
say that the total data set was very improbable.

Whether the sample frequency is a sufficient statistic depends on the
hypotheses being evaluated. In the example just described, the two
hypotheses agree that tosses are independent of each other. But suppose
this is something you want to test. And suppose further that the exact
sequence of heads and rtails is observed to be

HTHTHTHTHTHTHTHTHTHT

This sequence contains 50 percent heads, but it would be a mistake to
think that this logically weakened description captures all the information
in the data that is evidentially relevant. The order of heads and rtails is
evidentially relevant as well.

The logically weaker description of the data, the sample frequency, is a
disjunction. One of the disjuncts describes the exact sequence that did
occur; the other disjuncts describe exact sequences that 4id not. When p = §
and p = 2 are the two hypotheses under test, there is nothing wrong with
describing the data in this disjunctive form, saying that this sequence or that
sequence or that other sequence was the one that occurred without saying
which. The principle of total evidence is not a rule against disjunctions.
Rather, the rule says that logically weakening your description of the data is
not permitted when this changes your assessment of what the evidence
indicates. Applying the principle requires a rule for interpreting what the
evidence says about the hypotheses under test. At this point, likelihoodists
appeal to the law of likelihood and use the likelihood ratio. Bayesians can
agree with the above argument, since for them the likelihood ratio is the
vehicle by which ratios of priors are transformed into ratios of posterior
probabilities, as proposition (6) attests. Likelihoodists and Bayesians are on
the same page when it comes to the principle of total evidence.>

The limits of likelihoodism

Likelihoodism addresses the first of Royall’s three questions (§1.1) while
remaining silent on the other two; it confines itself to the task of inter-
preting what the evidence says while giving no advice on what you should

25 1 will not try to address the deeper question of what the ultimate justification is of the principle of
total evidence. I. J. Good (1967) provides a decision-theoretic justification.
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believe or do. Even so, the question remains of whether likelihoodism
accomplishes the relatively modest goal it sets for itself. The problem is
that there are many scientific hypotheses of intetest that are composite,
rather than simple. These are technical terms. The two hypotheses about
the coin (that p = w and that p = wv depicted in Figure 1.4 are both simple
in the sense that each says exactly how probable each possible outcome of
the experiment is. Composite hypotheses are more ambiguous; they cir-
cumscribe a family of probabilities that an observation might have
without singling out just one. An example would be the hypothesis chat
p > % this hypothesis does not say what the probability is of observing
exactly five heads in twenty tosses. There are many values that p mighe
have if it exceeds £, and each specific value has its own likelihood relative
to a given observation; composite hypotheses are disjunctions (sometimes
infinite disjunctions) of simple hypotheses.

Hypotheses that look as if they are composite can in reality turn out to be
statistically simple, if background information of a certain sort is available.
Imagine that there are three kinds of coins that a factory manufactures — a
third have p =1, a third have p =1, and a third have p = 1.0. If you chose a
coin made at this factory at random, then if the coin before you has p > 1,

w and p = 1.0 — and these are

equiprobable. The average of these is p = .w. Likelihoodists have no problem

there are just two possibilities — that p =

with assessing the hypothesis that p > % in this kind of context. True to their
antisubjectivist inclinations, they are happy to consider this hypothesis
because there is an objective answer to the question of what observations we
should expect to make if the hypothesis that p > £ is true. Absent this kind
of information, they decline to assess the hypothesis at all. Rather, they
relegate p > 1 to the same epistemic limbo to which they consign notGTR,
the catchall hypothesis that the GTR is false.

It is arguable that science often does not need to assess how the evi-
dence bears on such catchall hypotheses. Eddington was able to compare
the GTR with Newtonian theory, and maybe that is enough. However,
other composite hypotheses secem to play a central role in the activity of
science, so the likelihoodist denial that they can be handled should raise
more eyebrows. For example, population geneticists often want to say
whether the gene-sequence data gathered from a number of species favor
the hypothesis of random genetic drift or the hypothesis of selection. The
drift hypothesis is often statistically simple: For example, with respect to
the two alleles 4 and 4 that might exist at a given genetic locus, the drift
hypothesis says that they are identical in fitness. It says that wy = w,,
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which means that w4 — w, = 0. In contrast, the hypothesis of selection is
composite; it says that wy 7# w,; in other words, it says that wy — w, = 6,
where 0 is a parameter whose value is not equal to zero. Notice that there
are many different values that 8 might have if it isn’t equal to zero. Each
of these specific values for 6 entails its own probability for the data at
hand. But what does the bare hypothesis of selection itself predict? As the
previous example about the coin factory suggests, this question would be
answerable if we had an objective basis for assigning probabilities to the
different values 0 might take if it were nonzero. But, alas, we often lack
this type of information. For this reason, it is often impossible to compare
drift with selection within the framework of likelihoodism. Although
physicists may be content to compare the GTR with Newtonian theory
and to feel no need to ponder the catchall hypothesis that the GTR is
false, population geneticists have wanted to test drift against selection and
have even claimed to have done so. We will examine the question of
whether and how this is possible in Chapter 3. For now, the point is that
we have isolated an issue that unites Bayesians and frequentists; these two
old enemies maintain that likelihoodism is too austere. Frequentists think
they have good methods for testing composite hypotheses and Bayesians
deny that the hypotheses in question are really composite. Both rush in
where likelihoodists fear to tread.

1.4. FREQUENTISM I: SIGNIFICANCE TESTS AND PROBABILISTIC
MODUS TOLLENS

I began this chapter by painting with a broad brush. I said that Bayesians
hold that science is in the business of determining which theories are
probably true while frequentists hold that this is not at all what science is
about. [ then complicated the story by adding likelihoodists to the cast of
characters. They often eschew the goal of assigning probabilities, but in
many respects they are more like Bayesians than frequentists, as we now
will see. The fact that there are three positions here, not two, complicates
the problem of saying what frequentism amounts to. It is not enough to
say that frequentists reject the goal of assigning probabilities to hypoth-
eses, since that point, though correct, does not separate them from like-
lihoodists. What can be said that is distinctive of what frequentism is for?
We will uncover some of its differences with the other two philosophies in
due course. But we must bear in mind that frequentism is not a single
unified theory. Rather, it is a motley of different techniques that are often
only loosely connected with each other; sometimes they are even in
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conflict. In §1.2, I mentioned that Bayesianism gives epistemological
advice about probability assignments; what probability statements mean
(which “interpretation of probability” is correct) is a separate, semantic,
question. A similar point applies to frequentism. Frequentism is not the
thesis that probability statements are claims about actual or hypothetical
frequencies, though this semantic thesis is something that many fre-
quentists endorse. Rather, frequentism is a thesis about epistemology.
Frequentists assess a rule of inference by examining the (expected) fre-
quencies of good and bad outcomes when the rule is applied repeatedly.

The first frequentist method that I want to consider is R. A. Fisher’s
idea of significance tests. Fisher conceived of this procedure as a corrective
to what he thought was wrong with the Neyman—Pearson theory of
hypothesis testing, which I'll discuss in the next section. I take these two
approaches in reverse chronological order because Fisher’s theory is in
some ways casier to grasp than the Neyman-Pearson approach and
because its contrast with likelihoodism is more obvious.

To get started, let’s consider a simple rule of deductive reasoning,
modus tollens. This is a form of argument familiar to philosophers and
scientists; it is the centerpiece of Karl Popper’s views on falsifiability

(which T'll discuss in §2.8):

(MT) If H, then O
norO

notH

Modus tollens, like other rules of deductive logic, says what follows from
what. It does not, in the first instance, give advice. Still, it is natural to
interpret modus tollens as saying that if the hypothesis H entails the
observation statement O, and O turns out to be false, then / should be
rejected. 1 use a single line to separate premises from conclusion to indicate
that modus tollens is deductively valid (meaning, recall, that if the premises
are true, the conclusion must be). Since (MT) is valid, perhaps the fol-
lowing “probabilistic extension” of the rule constitutes a sensible
principle of nondeductive reasoning;:

(Prob-MT) Pr(O| H) is very high
notQO
notH

According to prebabilistic modus tollens, if the hypothesis H says that O
will very probably be true, and O turns out to be false, then H should be
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rejected. Equivalently, the suggestion is that if / says that some obser-
vational outcome (70tO) has a very low probability, and that outcome
nonetheless occurs, then we should regard H as false. I draw a double line
between premises and conclusion in (Prob-MT) to indicate that the
argument form is not supposed to be deductively valid. But maybe it is a
sensible form of inference nonetheless.

Before addressing whether probabilistic modus tollens is correct and
how it is related to deductive modus tollens, 1 want to discuss a parallel
question. Consider modus ponens:

(MP) If O, then H
0]
H

Modus ponens is deductively valid, and this may suggest that the following
probabilistic extension of the principle is also correct:

AWHO_YH.(:J Pr(H | O) is very high
0]

H

(Prob-MP) says that if O renders H very probable, and O is true, then we
should accept H. My brief comments in §1.2 on the lottery paradox
suggest that we should be wary of this rule of acceptance. But (Prob-MP)
has a close cousin, which we have already examined:

(Update) Prgen(H | O) is very high
)

O is all the evidence we have gathered between then and now.

Proow(H) is very high

This is nothing other than the rule of updating by strict conditionaliza-
tion. (Update) is a sensible rule, and it also has the property of being a
generalization of deductive modus ponens. By parity of reasoning, should
we conclude that probabilistic modus tollens is a good rule because it
generalizes deductive modus tollens?

Friends of (Prob-MT) need to say where the probability cutoff for
rejection is located. How low must Pr(O| H) be for O to justify rejecting
H? Richard Dawkins (1986: 144-6) addresses this question in the context
of discussing how theories of the origin of life should be evaluated. He
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says that an acceptable theory can say that the origin of life on Earth was
somewhat improbable, but it cannot go too far. If there are #z planets in
the universe that are “suitable” locales for life to originate, then an
acceptable theory of the origin of life on Earth must say that that event
had a probability of at least . Theories that say that terrestrial life was less
probable than this should be rejected. Creationists also have set cutoffs.
For example, Henry Morris (1980) says that theories that assign to an
event a probability less than _o_:o should be rejected, and William
Dembski (2004) says that a theory that assigns to a “specified event”
(a technical term in Dembski’s framework) a probability less than SH;o
should be rejected.*® Morris and Dembski obtain these numbers by
attempting to calculate how many times elementary particles could have
changed state since the universe began.

Dawkins, Dembski, and Morris have all made the same mistake. It isn’t
that they have glommed on to the wrong cutoff. The problem is deeper:
There is no such cutoff. Probabilistic modus tollens is an incorrect form of
inference (Hacking 1965; Edwards 1972; Royall 1997). Lots of perfectly
reasonable hypotheses say that the observations are very improbable. As
noted carlier, if H confers a very high probability on each of the observa-
tions Oy, O, ..., O g0 (but a probability that is short of unity), it will
confer a very low probability on their conjunction, if the observations are
independent of each other, conditional on H. A probability that is very
large but less than one, when multiplied by itself a large number of times,
will yield a very small probability. Adopting probabilistic moedus tollens
would have the effect of eliminating all probabilistic theories from science
once they are repeatedly tested.

It may seem that the kernel of truth in (Prob-MT) can be rescued by
modifying the argument’s conclusion. If it is too much to conclude that #
is false, perhaps we should conclude just that the observations constitute
evidence against /:

(Evidential Prob-MT) Pr(O| H) is very high.

notQ

notQ is evidence against H.

This principle is also unsatisfactory, as an example from Royall (1997: 67)
nicely illustrates. Suppose I send my valet to bring me one of my urns.

% For discussion of Dembski’s (1998) framework for inferring the existence of intelligent designers,
see Fitelson et al. (1999).
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I want to test the hypothesis (/) that the urn he returns with contains 0.2
percent white balls. I draw a ball from the urn and find that it is white. Is
this evidence against A7 It may not be. Suppose I have only two urns; one
of them contains 0.2 percent white balls, while the other contains 0.01
percent white balls. In this instance, drawing a white ball is evidence in
favor of H, not evidence against it.””

The use of genetic data in forensic identity tests provides a further
illustration of Royall’s point. Suppose that two individuals macch at
twenty independent loci; they are heterozygotes at each. At each locus,
each individual has one copy of a rare allele (frequency = 0.001) and
one copy of the alternative, common, allele (frequency = 0.999). The
probability of this twenty-fold matching, if the two individuals are
full sibs, is about [(0.001)(0.5)]?°. This is a very small number, but
that hardly shows thac the sib hypothesis should be rejected. In fact,
the data favor the sib hypothesis over the hypothesis that the two
individuals are unrelated. If they are unrelated, the probabilicy of the
observations is about [(0.001)(0.001)]%°. The two likelihoods are both
very small, but the firsc is 500%° times larger than the second (Crow et al.
2000: 65-7).%

These examples reflect a central idea in the likelihoodist theory of
evidence: judgments about evidential meaning are essentially contrastive.
To decide whether an observation is evidence against H, you need to
know what the alternative hypotheses are; to test a hypothesis requires testing
it against alternatives.”® In the story about the valet, observing a white ball
is very improbable according to H, but in fact that outcome is evidence in
favor of H, not evidence against it. This is because O is even more
improbable according to the alternative hypothesis. Probabilistic modus
tollens, in both its vanilla and evidential versions, needs to be replaced by
the law of likelihood. The relevance of this point is not confined to urn
problems and forensic DNA. It will play an important role in Chapter 4

27 A third formulation of probabilistic modus rollens is no better than the other two. Can one
conclude that H is probably false, given that H says that O is highly probable, and O fails to be
true? The answer is no; inspection of Bayes’ theorem shows that Pr(n0tO| H) can be low without
Pr(H| notO) being low.

Notice how the likelihood ratio, not the likelihood difference, figures in this argument.

There are two exceptions to the thesis that testing is always contrastive. If a true observation
statement entails F, there is no need to consider alternatives to #; you can conclude without
further ado that A is true; this is just modus ponens. And if H entails O and O turns out to be false,
you can conclude that H is false, again without needing to contemplate alternatives; this is just
modus tollens. It is a separate question how often these forms of argument apply to testing in
science. They rarely do. Observations almost never entail theories, and theories almost never entail
observations. More on this later.

28
29
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when we consider the question of why the similarities observed in two or
more species is evidence for those species’ having a common ancestor.
Within the framework developed there, an observed similarity O provides
stronger evidence in favor of the common ancestry (CA) hypothesis the
Jower the value is of Pr(O}| CA). The reason the evidence for CA is
strengthened by lowering the value of this conditional probability is that
lowering the value of Pr(O| CA) leads the value of Pr(O|SA) to plunge
even more; here SA is the hypothesis of separate ancestry.

There is a reformulation of probabilistic modus tollens that makes sense,
but it is Bayesian:

(Bayesian Prob-MT) Praen(O| H) is very high.
Priea(O| notH) is very low.
Prowea(H) == Pr(notH)

not-O

Proow(H) is very low.

Although the conclusion of this argument follows deductively from the
premises (given the rule of updating by strict conditionalization and that
notO is all you learned between then and now), this is a form of argument
that frequentists will not touch with a stick. The reason is not that it is
invalid (it is not) bur that it requires premises that frequentists regard as
too mcg.nnﬁ?a.w 0

Fisher’s (1959) test of significance is a version of probabilistic modus
tollens and that is bad enough. But it has the additional defect that it
violates the principle of total evidence. In a significance test, the
hypothesis you are testing is called the “null” hypothesis, and your
question is whether the observations you have are sufhciently improbable
according to the null hypothesis. However, you don’t consider the
observations in all their detail but racher the fact that they fall in a certain
region. You use a logically weaker rather than a logically stronger
description of the data. Here’s an example (from Howson and Urbach
1993: 176) that illustrates the point. You want to test the hypothesis that
a coin is fair (i.e., the hypothesis that the probability of heads is 0.5) by
tossing the coin twenty times. Assume that the tosses are independent of
each other. Suppose you obtain four heads. You then compute the

30 Wagner (2004) shows that a bound on the value of Pr{notH) can be derived from the values of
Pr(O| H) and Pr(notO); he calls his result a probabilistic version of modus tollens. This is not
the probabilistic modus tollens whose nonexistence I argue for above.
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probability of a disjunction in which “four heads” is one of the disjuncts.
You need to look at all the outcomes that the null hypothesis says are a¢
least as improbable as the one you actually obtained:

Pr(0or1or2or3or4orl6orl7 or 18 or 19 or 20 heads |

the coin is fair and the coin is tossed 20 times) = p.

The probability of this disjunction, conditional on the null hypothesis, is
called the p-value for the test outcome.

This p-value has two interpretations, corresponding to two different
conceptions of what a significance test is supposed to accomplish.
Sometimes significance testers draw a conclusion as to whether the null
hypothesis should be rejected. To do this, they specify a value for @, the
“level of significance”; the null hypothesis is rejected if the p-value is less
than this cutoff. If @ = 0.05 is your level of significance, then four heads
in twenty tosses will suffice to reject the null hypothesis, since the p-value
of this outcome is 0.012; had you obtained six heads in twenty tosses, this
outcome would not suffice to reject the null, since the p-value in this
instance is 0.115. It is generally conceded that choosing a value for ¢ is an
arbitrary matter of convention. The other interpretation of significance
tests is that they measure the strength of the evidence against the null
hypothesis; the lower the p-value of the outcome, the stronger the evi-
dence against. This comparative idea, by itself, does not say whether six
heads in twenty tosses is (in an absolute sense) evidence against the
hypothesis that the coin is fair, but it does say that four heads in twenty
tosses would be stronger evidence against it. If we stipulate that a p-value
of 0.05 is the cutoff between “strong evidence against the null hypothesis”
and not, then we know how to interpret six heads in twenty tosses, and
also how to interpret four in twenty and two in twenty. The first of these
is not strong evidence against the null while the second and third are.
There is arbitrariness here as well.

Both interpretations of significance tests are vulnerable o the fact
that there are many descriptions of the data that might be used, and
changing these can lead to different conclusions about the null
hypothesis. I mentioned that obtaining six heads in twenty tosses does
not allow you to reject the null hypothesis (if you set a = 0.05), since
the probability of obtaining between zero and six or between fourteen
and twenty heads is greater than 0.05. In this example, we thought of
each possible number of heads that might occur in twenty tosses (0, 1,
2, ...18, 19, 20) as an element in the outcome space and then gathered
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together the fourteen clements there that each has a probabilicy of
occurring under the null hypothesis that is less than or equal to the
probability of obtaining exactly six heads. But the outcome space can be
sliced up differently.”’ For example, instead of having twenty-one cat-
egories, you might decide to collapse some of these together. If you
combine five heads and ten heads into one category, and fourteen heads
and fifteen heads into another, you now have an outcome space with
nineteen categories, not twenty-one. If you then construct a disjunction
of the categories from this list that each has a probability that is less
than or equal to the probability of getting exactly six heads, you'll
discover that the probability of the relevant disjunction under the null
hypothesis is 0.49, which will lead you to reject the null hypothesis
(Howson and Urbach 1993: 182-3). Whether you reject the null
depends on how you slice the cake.

It might be objected that collapsing the twenty-one categories into
these nineteen is “unnatural,” or that finer-grained taxonomies are
preferable to ones that are coarser-grained. Defenders of significance tests
have not attempted to develop an account of naturalness, and it is unclear
how much help significance tests could extract from such an account.
However, it is abundantly clear that insisting on logically stronger
descriptions of the data does not help the significance tester. Instead of
having twenty-one categories in the outcome space, why not treat each
specific sequence of heads and tails as a separate element, with the resulc
that our outcome space now has 2?° members, each with the same
probability under the null hypothesis of @mo ? When we obtain a specific
sequence of heads and tails (say, one containing two heads) and then
collect the other elements in the outcome space that are no more probable
according to the null hypothesis, the result is that we construct a dis-
junction that contains @/ 2°° elements; the probability of this disjunction,
under the null hypothesis, is unity. With this fine-grained outcome space,
we’ll never reject the null, no matter what the outcome is.

Turning now to the evidential interpretation of significance tests, it is
important to see how it conflicts with likelihoodism. According to the
law of likelihood, whether the observations are evidence against the
hypothesis that the coin is fair depends on which alternative hypothesis
you consider. If the alternative to the null hypothesis says that the
probability of heads is 0.8, then observing four heads in twenty tosses will

3 Compare this point with considerations about cake slicing that arise in connection with the
principle of indifference (§1.2).
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be evidence iz favor of the null hypothesis, not evidence against it. If the
modest principle stated in §1.1 is correct, this point also bears on the idea
that significance testing provides a rule of rejection. If an observation
justifies you in rejecting H, and you were not justified in rejecting H
before you obtained the observation, then the observation must be evi-
dence against A. The fact that significance tests don’t contrast the null
hypothesis with alternatives suffices to show that they do not provide a
good rule for rejection.

Another odd property of significance tests concerns the way in which
they are sensitive to sample size. Howson and Urbach (1993: 208-9)
explain this point by describing a nice example due to Lindlay (1957).
Suppose you wish to test the hypothesis (#;) that 40 percent of the
marbles in an urn are red. If you examine ten balls and choose a = 0.05,
you will reject H; if you see seven or more red balls. If you examine 100
balls and choose the same value for @, you will nm_.nnm H, if you observed
more than forty-eight red balls. And if you examine 1,000 balls, again
with a = 0.05, you will reject H if you observe more than 403 red balls.
As sample size increases, the observed frequency must be closer and closer
to 40 percent for you to not reject ;. With ten balls, you need to observe
less than 70 percent; with 100 you need to observe less than 48 percent;
and with 1,000, you need to observe less than 41 percent. This may not
seem strange until you add the following detail. Suppose the alternative to
H is the hypothesis (H>) that there are 60 percent red balls in the urn.
The law of likelihood now entails that observing fewer than 50 percent
red favors H; over H., that observing more than 50 percent red has the
opposite evidential significance, and that these interpretations of the
observations are correct at all sample sizes. If the law of likelihood is right,
and if the modest principle stated in §1.2 correctly describes the con-
nection between evidence and rejection, then we have here an objection to
significance tests.

Although I have criticized the rejection and the evidential interpret-
ations of significance tests, there is 2 more modest interpretation that is
beyond reproach. Fisher (1956: 39, 43) put the point like this: If H says
that O is very improbable, and O occurs, then we know that a disjunction
is true — cither H is false or something very improbable has occurred.
This disjunction does follow. However, what does not follow is the first of
Fisher’s disjuncts; nor does it follow that we have obtained evidence against
H. Another modest interpretation of significance tests is also appropriate:
An observational outcome that a hypothesis says is very improbable may
prompt you to search for a different hypothesis that says that the outcome
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was less surprising. This is how I understand the following remark thac
Gossett made in the 1930s:

{a significance test] doesn’t in itself necessarily prove that the sample is not drawn
randomly from the population even if the [p-value] is very small, say .00001; what
it does is to show that if there is any alternative hypothesis which will explain the
occurrence of the sample with a more reasonable probability, say 0.05 [...] you
will be very much more inclined to consider that the original hypothesis is not

true. (quoted in Hacking 1965: 83)

This gentle suggestion has good likelihoodist credentdials.

If probabilistic modus tollens and significance tests have the flaws just
described, can we abandon the probabilistic and simply rely on the
deductive form? If H; entails O and O turns out to be false, it follows that
H, is false. If H; is the only alternative to H, it further follows that A, is
true. This is the pattern of reasoning that Sherlock Holmes endorses in
The Sign of Four where Sir Arthur Conan Doyle has his hero say thac
“when you have eliminated the impossible, whatever remains, however
improbable, must be the truth.” The correctness of this pronouncement is
not in dispute; rather, it is the applicability of Holmes’s dicturn that I
contest. In science, it is rarely the case that the hypotheses under test
deductively entail observational claims. This is obvious in the case of
hypotheses that use the concept of probability (as in my running example
of the hypothesis that a coin is fair). But the point often holds when
hypotheses make no mention of probability. For example, when
Eddington tested Newtonian theory against relativity theory, the com-
peting hypotheses did not provide point predictions about what he should
observe when he measured the bend in starlight during a solar eclipse.
Because his measurements were imprecise, he could say only that the
observations would probably fall in one value range if Newtonian theory
were true and that they would %E?&\u\ fall in a second interval if relativiey
theory were true. The pervasive parttern in science is that hypotheses
confer (nonextreme) probabilities on observations. 32

It may seem not to matter much whether a hypothesis says that O
cannot occur or says only that O very probably will not occur. In fact, the
difference is profound. If you observe that O is true, the former allows
you to reject H without your needing to consider an alternative
hypothesis. In contrast, the latter does not license rejection, and there is

32 The fact that scientific theories typically confer probabilities on observations only when auxiliary
information is added will be explored in the next chapter in connection with Duhem’s thesis.
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no saying whether the observation is evidence against A unless an alter-
native hypothesis is specified.

1.5 FREQUENTISM II: NEYMAN—PEARSON HYPOTHESIS TESTING

The theory of hypothesis testing set forth by Neyman and Pearson
(1933), and subsequently developed in detail by Neyman, gives advice
about rejection, not, in the first instance, advice about the interpretation
of evidence. As noted in §1.1, Neyman and Pearson state that they are not
interested in interpreting evidence but only in stating general rules for
guiding “behavior.” This claim notwithstanding, the interpretation of
evidence and the rational acceptance and rejection of hypotheses are
related if the modest principle enunciated earlier is correct; if learning that
O is true justifies rejecting H, where the rejection of H was not justified
before that knowledge was gained, then O must be evidence against H.
The Neyman—Pearson theory, as we will see, violates this principle.

If you are going to decide whether to accept or reject a hypothesis in
the light of a set of observations, there are two kinds of error to which you
are vulnerable. Consider the tuberculosis test discussed earlier, but this
time let’s frame the problem in terms of the task of acceptance and
rejection, not as a question concerning the interpretation of evidence.
You, the physician, receive the report of your patient’s tuberculosis test
result. The report is either positive or negative, and the patient either has
tuberculosis or does not. You have two options: You can accept the
hypothesis that your patient has tuberculosis or you can reject it. There
are two kinds of error you might commit: You might reject the hypothesis
that he has tuberculosis when it is true, or you might accept the
hypothesis when it is false. These options are depicted in Figure 1.8, as are

Possible states of the world

H = § has tuberculosis S does not

reject H et -
Possible decisions

accept H | o d-—g; ;

Figure 1.8 S either has tuberculosis or does not, and you, the physician, must decide whether
to accept or reject the hypothesis /7 that § has tuberculosis. The four cells represent four
possibilities; cell entries represent probabilities of the form Pr(decision | state of the world).
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the probabilities of mistaken rejection (¢;) and of mistaken acceptance
(e2). If you were to ignore the report and merely toss a coin, your two
error probabilities would then each have a value of 0.5. But you can do
better if the test procedure you use is refiable in the sense described in
§1.2; the more reliable the procedure, the smaller the error probabilities
are. However, this does not mean that you will probably get the right
answer if you use a reliable procedure. The error probabilides are of the
form Pr(you accept hypothesis /| H is false) and Pr(you reject hypothesis
H| H is true); they do not represent Pr(H is false | you accept H) and
Pr(H is true|you reject H). Neyman—Pearson hypothesis testing is
frequentist, not Bayesian.

Neyman—Pearson theory begins with the truism that it is better to have
smaller error probabilities than larger ones. If you are going to base your
decision about your patient’s condition on what a test result says, you’ll do
better by using a more reliable testing procedure than one that is less. For
example, suppose you can use a test kit that is made in Madison or one
that is made in Middleton, where the two pairs of error probabilities are:

The Madison test kit: Pr(— test result | S has tuberculosis) = 0.02.

Pr{+ test resulc|S does not have tuberculosis) = 0.01.

The Middleton test kit: Pr(— test result|S has tuberculosis) = 0.04.

Pr(+ test result|S does not have tuberculosis) = 0.03.

Surely you’d want to use the Madison test kit, since both its error
probabilities are lower. But how should you choose between the Madison
kit and one made in Prairie du Chien? The error probabilities of this third
test kit are:

The Prairie du Chien test kit: Pr(— test result| S has tuberculosis) = 0.01.

Pr(+ test result| S does not have tuberculosis) = 0.02.

To choose between Madison and Prairie du Chien, you must decide
which kind of error is worse to commit. Is it more important to avoid
accepting that § has tuberculosis when he does not, or to avoid rejecting
the hypothesis that S has tuberculosis when he does? One obvious way to
decide this is to think about how your actions will be influenced by what
you believe. Is it worse to treat someone for tuberculosis when he doesn’t
have the disease, or to fail to treat someone for tuberculosis when he does?
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Notice how ethical considerations figure in this question. The issue is not
strictly epistemological. In terms of Royall’s three questions (S1.1), we are
edging towards question (3) and away from questions (1) and (2).

The Neyman—Pearson theory recognizes that there are two types of
error, but it does not treat them the same. First, you choose which of the
two hypotheses under test you’ll regard as the “null hypothesis.” You then
decide how large an error probability you will tolerate in connection with
mistakenly rejecting the null:

Pr(reject the null hypothesis | the null hypothesis is true) < a.

Scientists usually choose a value of o = 0.05 while recognizing that this
choice is arbitrary. The probability of rejecting the null hypothesis when it
is true is called a Type-1 error. After putting an upper limit on how much
Type-1 error you are prepared to tolerate, you then try to minimize the

probability of the other kind of error:
Pr(accept the null hypothesis | the null hypothesis is false) = p.

The mistake of accepting the null hypothesis when it is false is a Type-2
error. So there are three steps in the Neyman—Pearson process: Decide
which hypothesis is the null; set an upper limit on the probability of
Type-1 error; and then minimize the probability of Type-2 error.

Suppose you decide that “S has tuberculosis” is your null hypothesis
and you chose a value for a of 0.05; given these choices, all three test kits
are acceptable so far. But now you want to minimize B. Madison does
better on this score than either Middleton or Prairie du Chien. On the
other hand, if you decide that “S does not have tuberculosis” is the null
hypothesis while still hewing to the convention that o < 0.05, you’ll end
up opting for the test kit from Prairie du Chien. Different decisions about
what the null hypothesis is lead to different test procedures. Here is some
more terminology: o (the probability of Type-1 error) is called the “size”
of your test and (1—f) is called its “power.” Neyman—Pearson testing
treats these asymmetrically: First get the size below some threshold, then
maximize power.

To apply this framework in a way that brings out how it is related to
likelihoodism, let’s return to the coin-tossing problem discussed earlier.
Suppose your plan is to toss the coin thirty times and that there are two
hypotheses you want to consider. The first says thac the probability of
heads is § on each toss while the second says that this probability is 2 The
probability that each hypothesis assigns to each possible outcome of your
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p= p=%

Pr(data | p=7)

4|\\\\

0 7.6 12 15 225 30
Number of heads in thirty tosses

Figure 1.9 If p = } is the null hypothesis and p = J is the alternative to the null, and a =
0.05 is chosen, the Neyman—Pearson theory says that the null hypothesis should be
rejected if and only if twelve or more heads occur in thirty tosses of the coin.

experiment is depicted in Figure 1.9. Suppose you decide to regard the
hypothesis that p =  as your null hypothesis and you choose 0.05 as your
value for a. You thereby require that the chance of rejecting this
hypothesis, if it is true, must be less than or equal to 0.05. You now must
use this stipulation to identify a “critical region.” That is, you need to say
what possible outcomes will suffice for rejecting the null hypothesis, given
that you want to make sure that the probability of mistakenly rejecting the
null hypothesis is no greater than 1 in 20. Many choices satisfy this
requirement. For example, if you reject the null hypothesis precisely when
there are zero heads in thirty tosses, the probability of rejecting the
hypothesis that p = X when the hypothesis is true is only (0.75)°°, which is
tiny. The same can be said of the policy of rejecting the null hypothesis
precisely when a// thirty tosses land heads. With this policy, the chance of
rejecting the null when it is true is only (0.25)%°, again a tiny number.
Notice that neither of these judgments depends in any way on what the
alternative to the null hypothesis happens to be. The fundamental dif-
ference between Neyman—Pearson testing and Fisher’s test of significance
is that the former is contrastive (pitting the null hypothesis agains a
specified alternative), while the latter is not. We now need to see what role
the alternative to the null hypothesis plays in determining what the cricical
region will be. The critical region is determined by the joint fact that we
want the chance of rejecting the hypothesis that p = L if it is true to be no
greater than 0.05 and we also want the chance of accepting this hypothesis
if it is false (in which case p = .w. is true) to be as small as possible. These
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two requirements result in a. unique policy. We should reject the
hypothesis that p = % precisely when there are twelve or more heads in the
thirty tosses. This curtoff is depicted in Figure 1.9 (the example is from
Royall 1997: 16-17). .

Notice that this cutoff differs from the one drawn by the law of like-
lihood, which says that a data set with fourteen or fewer heads favors the
first hypothesis while a data set with sixteen or more heads has the
opposite evidential significance. If there are exactly fifteen heads in thirty
tosses, the two hypotheses have the same likelihood. As noted before, the
law of likelihood answers Royall’s first question (what does the evidence
say?) while the Neyman—Pearson theory provides a policy for acceptance
and rejection. However, the two come into contact (and are incompat-
ible) if it is a mistake to reject a hypothesis because one has obtained a set
of observations that, in fact, are evidence for the hypothesis, not evidence
against it. This is precisely what happens if you observe twelve, thirteen,
or fourteen heads in thirty tosses. If you obtain any of these outcomes in
your experiment, the Neyman-Pearson theory says to reject p = %, while
the law of likelihood interprets each of these outcomes as evidence in favor
of p = % (given that the alternative hypothesis is p = 2). If the law of
likelihood is right, the Neyman—Pearson theory is wrong.

What procedure would the Neyman-Pearson theory recommend if you
were to decide that p = 2 is your null hypothesis? You then would draw a
different cutoff, bur it, too, would fail to coincide with the boundary
drawn by the law of likelihood. With the hypothesis that p = 2 as your
null, you will reject this hypothesis precisely when eighteen or fewer tosses
land heads. This means that if you observe between twelve and eighteen
heads, your decision about which of the two hypotheses you’ll reject
depends on which is the null and which is the alternative. If the
hypothesis that p = % is your null hypothesis, you reject it when any of
these outcomes occurs; burt if p = 1 is the alternative to the null, you do
not. Life is harder on a hypothesis if it is treated as the null. Notice that
the law of likelihood does not depend on how you label the various
hypotheses you wish to evaluate, and there is no need to choose a value for
a, either. This is a good thing, since both choices are arbitrary.

As noted, Neyman—DPearson theory first fixes a value for o and then
seeks to minimize the value of B. This is why the cutoff it draws differs
from the one dictated by the law of likelihood. The history of statistics
might have been different. If the two types of error had been treated as
equally serious, the goal would have been to minimize the sum (a0 + f3) of
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the two error probabilities. This would have provided no guidance in the
choice between Madison and Prairie du Chien, but it would have resulted
in a crossover point of fifteen heads in thirty tosses (Royall 1997: 17),
thus bringing the Neyman—Pearson philosophy into accord with the law
of likelihood. In fact, there are many policies that correspond to different
ways of handling the disutilities that atrach to Type-1 and Type-2 errors.
Even if avoiding Type-1 error is more important than avoiding Type-2,
why should this mean that we need to sdpulate a value for a? For
example, setting o = 0.05 means that it doesn’t matter to you whether
the chance of Type-1 error is 0.04 or 0.004. If making o small matters
more than making 3 small, why not require that the sum (10a + B) be
minimized? This is why the behaviorist justification of the Neyman—
Pearson philosophy does not work on its own terms. Even if “acceptance’™
and “rejection” are taken to be behaviors that need have no connection to
an assessment of evidence, the desire to reduce the frequencies of errors in
one’s lifetime (or in the lifetime of the enterprise of science) does not
automatically entail the policy of first choosing a value for a and then
minimizing 3.

In discussing the principle of total evidence (§1.3), I described a few
examples in which logically strengthening or logically weakening one’s
description of the data affects which of two hypotheses has the higher
likelihood. This principle is also relevant to thinking about how the
Neyman—Pearson theory bears on the question of how evidence should be
assessed. We have already seen, in connection with the coin-tossing
example depicted in Figure 1.8, that observing twelve heads in thircy
tosses leads the Neyman—Pearson theory to reject the null hypothesis that
p = 1+ and to accept the hypothesis that p = 2 (or to not reject it) even
though the former has the higher likelihood. But now let us logically
weaken the description of the observations. Instead of saying “we observed
exactly rwelve,” let us say “‘we observed twelve or more green balls.” The law
of likelihood judges that this logically weakened description of the data has
a different evidential significance. Since o and  are both small, this
weakened description of the darta favors p = 2 over p = 1, and the likeli-

hood ratio is (1 — /¢, a quantity substantially greater than unity. It Zs

— 3
4

than if p = w Look at the areas under the two curves in Figure 1.8. The

more probable that youll get mwelve or more heads in thirty tosses if p

Neyman—Pearson theory and the law of likelihood are in accord with
respect to how evidence should be interpreted when information in the
data set is thrown away. However, this reconciliation has a price: We
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have violated the principle of total evidence. From the point of view of
likelihoodism and Bayesianism as well, this is a serious defect in the
Neyman-—Pearson theory.

In addition to the difficulties already noted, which strike both likeli-
hoodists and Bayesians as fatal, there is a further fact about the Neyman-—
Pearson theory that especially irks Bayesians. How can “acceptance” and
“rejection” be based just on the evidence at hand? True, if your test
procedure is very reliable, a positive test result provides evidence that
strongly favors the hypothesis that S has tuberculosis over the hypothesis
that he does not. However, this is consistent with its being very improbable,
given the positive test result, that S has tuberculosis. The Neyman—Pearson
policy sometimes recommends accepting a hypothesis in the light of evi-
dence that renders the hypothesis very improbable. This is what can happen
when acceptance and rejection are controlled by likelihoods and priors are
ignored. This criticism of the Neyman—Pearson theory does not require
that prior probabilities 2/ways make sense. All that is needed is that they
sometimes do, and this is something that non-Bayesians should concede.

In order to bring out one last feature of the Neyman—Pearson
approach, let us consider a fourth tuberculosis test kit; it is made in
Mazomanie:

The Mazomanie test kit: Pr(— test result | S has tuberculosis) = 0.902

Pr(+ test result| S does not have tuberculosis) = 0.001.

If you decide that S has tuberculosis” is the null hypothesis and set
a= 0.05, you will decline to use this test kit. But suppose you did so
anyway, perhaps by mistake, and you obtained a positive test resule. How
should you interpret this evidence? A likelihoodist will say that you have
just obtained strong evidence favoring the hypothesis that S has tuber-
culosis since the relevant likelihood ratio is large:

Prrazomanie (1 test result| S has ruberculosis) - 0.098 08

Pritazomanie(+ test result| S does not have tuberculosis)  0.001

In fact, this evidence is precisely as strong as the evidence that attaches to a
positive result produced by the Madison test kit. Even though the two test
kits have different values for o and B, a positive test result produced by
using the Madison test kit also produces a likelihood ratio of 0.98/0.01 =
98. Yet, the Neyman—Pearson methodology instructs you not to use the
Mazomanie test kit and embraces the one from Madison. How can it do
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so, if the two are evidentially equivalent when a positive test result is
produced? The answer is that the Neyman—Pearson theory addresses the
question of how one should choose a general policy. If you, the docror,
have to choose between using the Madison test kit on all your patients
and using the Mazomanie test kit on all of them, the plausible choice is to
opt for the one from Madison. Notice that the previous sentence answers
a question that falls under Royall’s question (3): What should you do?
That is, which test kit should you use in your medical practice? It is not an
answer to question (1): What is the evidential meaning of S’s positive test
result? Nor does it address question (2): Should you believe that S has
tuberculosis? Hacking (1965) makes this point by distinguishing the task
of before-trial betting and after-trial evaluation. The first involves
designing an experiment, the second the interpretation of the results you
obtained on the experiment you actually ran. Likelihoodists and Bayesians
hold that both tasks are important but maintain that they are distinct.
The Neyman—Pearson philosophy does not distinguish these tasks; once
a general procedure has been chosen, there is no additional question
as to how the result obrained by applying the procedure on a single
occasion should be interpreted. This difference between the philosophies
becomes vivid when a less than optimal test procedure is used and one
wishes to interpret the result. This was my point in introducing the
Mazomanie test kit. If you use this procedure and obtain a positive resutt,
Neyman—Pearson frequentists will say that you shouldn’t have used that
test kit and will refuse to interpret the outcome; Bayesians and like-
lihoodists will say that using that test kit rather than the one from
Madison turned out not to matter and will be happy to interpret the test
outcome. Philosophers will recognize that this difference between the two
statistical frameworks parallels the distinction in ethics between rule and
act utilitarianism.

I have described the rudiments of the Neyman—Pearson theory in the
context of the simple example of coin tossing, and this has allowed me
also to describe some standard criticisms of that approach. However,
frequentists may want to object that it is silly to test the hypothesis that
2 = ; against the hypothesis that p = 2. Instead, why not just estimate the
value of p (and draw a confidence interval around that estimate)? For
example, if there are twelve heads in the thirty tosses, you can simply say
that the maximum likelihood (ML) estimate of p is 0.4; as already noted,
this doesn’t mean that p probably has a value of 0.4 or even that the true
value is probably close to 0.4. However, in saying that this is the ML
estimate, you can sweep aside the problem of deciding which of p = ; and
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p = 2 is the null hypothesis and what your value for a ought to be. ML
estimation may sound like likelihoodism or even Bayesianism, but fre-
quentists have their own special rationale for this procedure. Frequentists
do not accept the law of likelihood. Rather, they see the method of ML
estimation as justified, when it is, because it has certain virtues as a general
policy; for frequentists, there is no additional question about the evalu-
ation of an individual ML estimate. It is estimators, not estimates, that is
their focus. A central concept in the frequentist theory of estimation is
that an estimator (i.e., a procedure for making estimates) must be
admissible. A method of estimation is zzadmissible if there is another
estimator that has a smaller expected error for all possible values that the
parameter being estimated might take. Whereas inadmissibility arguably
suffices to not use an estimator, admissibility is not sufficient for a method
to be used. The reason is that there can be multiple admissible estimators
that give contradictory advice. In any event, it turns out that ML esti-
mation is an admissible procedure when one or two parameters are being
estimated but not when the estimation problem involves three or more.
With more than two parameters, there is another procedure, involving
shrinkage in accordance with a formula derived by James and Stein
(1961) that has a lower expected error no matter what the true values are
of the parameters being estimated (Efron and Morris 1977). This is not
the place to pursue questions about estimation any further; suffice it to say
that frequentists can decline to use the Neyman—Pearson theory to test the
hypothesis that p = % against the hypothesis that p = 2 and insist that
maximum likelihood estimation of the value of p is the way to go.>
Although estimation may make more sense than Neyman-Pearson
hypothesis testing when the two hypotheses are statistically simple, this
option is not available to the frequentist when both the hypotheses being
tested are composite. In this case, the standard Neyman—Pearson approach
is the likelihood ratio test. Don’t let this terminology mislead you; this test
is a frequentist construct even though the likelihood ratio also appears in
the law of likelihood, which is the central concept of likelihoodism.
Here’s an example that illustrates what the likelihood ratio test involves.
You conduct the following experiment in your kitchen: You heat a
pressure cooker to a given temperature and then observe how much
pressure there is in the container. You don’t observe the temperature and

* It is worth emphasizing that chis change in strategy does nothing to vindicate the Neyman—
Pearson theory as it applies to simple hypotheses. The objections have not been mez; rather an
alrogether different frequentist approach has been suggested.
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L(LIN)

— L(PAR)

Pressure

Temperature

Figure 1.10 Each of the observations can be represented by a data point. L(LIN) is the

straight line that fits the data best; L(PAR) is the parabola thar fits best. The likelihood

ratio test compares the models LIN and PAR by computing the likelihood ratio of L(LIN)
and L(PAR).

pressure directly; rather, you observe the readings that a thermometer and
a pressure meter provide. You know that these devices are reliable, but not
perfectly reliable. You do this experiment multiple times, representing
each observation by a point in the coordinate system depicted in Figure 1.10.

Suppose there are two models you want to test that both attempt to
describe how temperature and pressure are related in this system. With
the variables X and Y representing temperature and pressure, respectively,
the two models are:

(LIN) y=a+tbx+te
(PAR) y=a+bx+od+e.

LIN says that temperature and pressure are related linearly; PAR says
that they are related parabolically. In these models, x and y are variables,
while @, 4, ¢, and e are parameters. Each model is an infinite disjunction;
LIN is a disjunction of all straight lines in the X-¥ plane; and PAR is a
disjunction of all the parabolas. In other words, these models have
existential quantifiers attached to their adjustable parameters; LIN, for
example, says that there exist values for @, b, and e such that y = a2 + bx + e.
The “¢” in each model represents the fact that your observations are
subject to error. Even if the true relationship between temperature and
pressure is linear, you can’t assume that the data you gather will fall
exactly on a straight line. LIN postulates an error distribution around each
of the straight lines it includes. Although a straight line is sometimes said
to provide the “predicted” y-value for a given x-value, this is a bit
misleading. What each straight line in LIN represents is the average (the
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L(LIN)

Pressure

Temperature

Figure 1.11 Z(LIN) is the straight line that is closest to the data; the LIN model
postulates an error distribution around this line. The observed pressure value for a given
temperature need not coincide exactly with the average (“predicted”) pressure value.

expected value; see §1.2) of the observed pressure-values that should be
associated with a given value of temperature. This error distribution is
depicted in Figure 1.11.

Here’s how the likelihood ratio test applies to the comparison of LIN
and PAR. First, you find the straight line that maximizes the probability
of the data. This will be the straight line that is “closest” to the data; that
is, the line that “fits” them best. Call this maximum likelihood straight line
L(LIN). Then you do the same thing with PAR. There are many parabolas,
some close to the data, others far away. You need to find the member of
PAR that maximizes the probability of the data; this is LZ{PAR). These two
“best cases” of LIN and PAR are depicted in Figure 1.10. In discussing
how the Neyman—Pearson theory evaluates the two simple statistical
hypotheses (p = w and p = 3) about coin tossing shown in Figure 1.9, T was
able to discuss what each predicts about the data. But LIN and PAR are
composite. Neither says how probable the data are that you generated in
your kitchen (i.e., how probable the y values you observed are, given the x
values you used). The Neyman—Pearson theory solves this problem by
shifting from LIN to Z(LIN) and from PAR to L(PAR). We test the two
models by comparing the maximum likelihood members of each. It’s as if
LIN and PAR are two armies that compete by each sending forth its fictest
champion. The armies stand idle and are evaluated by seeing which
champion wins the mano a mano. The likelihood ratio test of LIN against
PAR focuses on the likelihood ratio

Prldata| L(LIN)]
Pr[data| L(PAR)]’
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The question is whether this ratio is smaller than some arbitrarily chosen
level of significance; if it is, you should reject LIN.

One interesting feature of the likelihood ratio test is that it avoids an
arbitrariness that afflicts the Neyman-Pearson test of two simple
hypotheses. In the coin-tossing example of testing p = } against p = 2, you
need to decide which of these hypotheses is the null. As also was true in
the example of the tuberculosis test, there is nothing inherent in these
simple hypotheses that settles which is “really” the null. Considerations
concerning which type of error you are more concerned to avoid are
typically brought to bear, but this is a fact about us, not about the
hypotheses themselves. Testing LIN against PAR is a different matter.
Each of these models contains adjustable parameters, but it is LIN that
says that ¢ = 0 while PAR leaves open what value that parameter has. It is in
this objective sense that LIN can be said to be the null hypothesis in this
two-way competition. Frequentists sometimes describe the choice of null
by talking about which of the hypotheses we want to nullify (i.e., reject),
but there is no need for us and our desires to intrude into the story.

When I discussed the two simple hypotheses p = 7 and p = 2 about the
coin and the problem of deciding which of them is the null hypothesis
and what level of a to use, I considered the possibility that frequentists
might decline to apply the Neyman-Pearson theory to this problem and
instead would insist that the problem to address is how best to estimate
the value of the parameter p, where p = Pr(the coin lands heads | the coin
is tossed). Estimation is an issue that arises affer you have settled on a
given model of the experiment. You have already decided that each toss of
the coin has the same probability of landing heads as every other and you
have decided that the tosses are independent of each other. Given this
framework, you can estimate p. Testing the composite hypotheses LIN
and PAR is different. The problem of choosing a level of significance can’c
be set aside and an estimation problem considered in its stead. The reason
is that the competition between LIN and PAR is a competition betweer
models, while estimation is a task that is carried out wiézhin the confines of
a single model. True, if you assume that LIN is true, you can estimate the
values of the parameters in it; the same goes for PAR. But that hardly
suffices to test LIN against PAR. In fact, you know in advance that
L(LIN) can’t have a higher likelihood than L(PAR). This is because LIN
is nested in PAR. LIN is a special case of PAR; the equation for LIN can
be obtained from the equation for PAR by setting the parameter ¢ = 0.
Given thar the ratio on which the likelihood ratio test focuses can’t have a
value that is greater than unity, the frequentist’s question is whether the
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ratio is significantly less than unity; you have to look at the data to sce
whether this is so.

It is interesting to reflect on what the frequentist advice to “accept” or
“reject” means in the context of these two composite models. LIN is
nested in PAR, meaning that LIN logically entails PAR. If so, what would
it mean to accept LIN and reject PAR? You can’t regard LIN as true and
PAR as false if the former entails the latter. It also makes no sense to
decline to reject LIN and to reject PAR; if PAR is false, so is LIN. Tt might
be replied that the frequentist can eliminate this problem by stipulating
that the models worth talking about are nor nested; this can be achieved
by requiring that all the parameters in the two models have nonzero
values. Now the models are incompatible. The problem with this reply is
that the mathematics that underlies the likelihood ratio test requires that
models be nested (Burnham and Anderson 2002).

Bayesians have an additional criticism of the Neyman—Pearson treat-
ment of composite hypotheses, one that does not apply when only simple
hypotheses arc considered. The Neyman—Pearson theory compares LIN
and PAR by comparing the members of each that have maximum like-
lihood, namely Z(LIN) and L(PAR). But the likelihoods of LIN and PAR,
the Bayesian will observe, are not these maxima but rather are their
average likelihoods. Since LIN is a disjunction of straight lines (L, L,
...), it has a likelihood of the following form:

Pr(data | LIN) = Y . Pr(dara | L;) Pr(Li | LIN).>*

Frequentists don’t want to discuss these average likelihoods because it
often is impossible to empirically justify an assignment of values to the
weighting terms that have the form Pr(L;| LIN). If the temperature and
pressure in your pressure cooker are lincarly related, what is the probability
of the different specific straight-line relations that might obtain (and please
answer this question without looking at the data you drew from your
pressure cooker)? This is one motive that frequentists have for shifting from
the average likelihood of the infinitely many straight lines that belong to
LIN to the unique likelihood value that attaches to just one of them, namely
to L{LIN). This s a motive for shifting, but not a justification for the
likelihood ratio rest. The justification offered is that if you follow the
Neyman—Pearson procedure again and again, the expected value of your

4 SIS - - . .
34 This should be an integral, not a discrete summation, but I prefer to use the larter to make this
material accessible to a wider readership. Aficionados know how to correct this crudicy.
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Type-1 errors will be no more than a, and the expected value of your
Type-2 errors will be B. 1t’s the general policy thar has this property, but
the question may be asked of why this property of the general policy shows,
in the concrete situation of evaluating LIN and PAR with the data you have
from your kitchen experiment, that you should evaluate the two models by
examining the maximum likelihood special cases of each. Frequentists
regard this question as irrelevant, while Bayesians regard it as central.

Even if there is nothing arbitrary about saying that LIN is the null
hypothesis when LIN is compared with PAR in a likelihood ratio test,
there is another detail of this procedure that introduces a kind of arbi-
trariness that did not appear in the example of testing the two simple
hypotheses p = % and p = 2 about coin tossing. To see what this new
arbitrary element is, we need to consider a hierarchy of nested models, not
just two. LIN and PAR are both polynomials; each has the form:

yo=bg 4 bix+ by’ 4 by x4 b

LIN is a first-degree polynomial and PAR is second-degree. Let’s consider
a hierarchy of five polynomials by adding to our list three more — a third,
fourth, and fifth degree. For simplicity, let’s call these five models A, B, C,
D, and E. We need to fit each of these five models to the data from our
stovetop experiment and then figure out the likelihood ratios for adjacent
pairs of fitted models. Suppose we obtain the following left-to-right
likelihood ratios:

L(A) « (0.1) —=L(B) « (0.3) —L(C) « (0.05) —L(D) « (0.5) —L(E).

There are two ways to apply the likelihood ratio test to this hierarchy:
step-up and step-down. In each case, a level of significance needs to be
chosen; suppose you select @ = 0.15. In step-up testing, you begin with
the simplest model A and ask whether the likelihood ratio of L{A) to L
(B) is less than 0.15. If it is, you reject A and then compare B and C and
ask the same question. You continue to step-up until you can’t anymore.
The result of step-up testing on this sequence of models is to reject A in
favor of B but then to fail to reject B in favor of C. The process ter-
minates with B. In step-down testing, you begin with the most complex
model, E, and compare it with the model that is one step down, namely
D. The question is whether the likelihood ratio of Z(D) to Z(E) is less
than 0.15. If it is, you stay with E. If it is not, you move from E to D.
Given the numbers shown above, this step-down process terminates
with D. The choice between step-up and step-down testing is arbitrary
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and yet it can influence which models you accept and reject (Burnham

and Anderson 1998).

1.6 A TEST CASE: STOPPING RULES

There is a classic puzzle that illustrates the clash between Bayesianism and
likelihoodism on the one hand and significance tests and the Neyman—
Pearson theory on the other. It concerns the “stopping rule” used when
observations are gathered. This rule determines when the inquiry is over. In
the example about coin tossing that I used to explain significance tests in
§1.4, the stopping rule was to stop after the coin is tossed twenty times; it
then turned out that six heads had occurred. The same outcome can occur if
a different stopping rule is used. For example, you might decide to toss the
coin until you obtain six heads, and it then turns out that the sixth head
occurs on the twentieth toss. Here’s the question: if you obtain the sixth head
on your twentieth toss, should your interpretation of this result depend on
which of the two stopping rules you used? Likelihoodism and Bayesianism
say n0, whereas the two versions of frequentism examined so far say yes.”>

Let’s begin with the likelihood analysis, which the Bayesian accepts; the
issue about prior probabilities plays no role here. Although this problem is
sometimes described as if it is supposed to be obvious that Bayesianism
entails that the choice of stopping rule is irrelevant, the reason for this is
worth tracing carefully. For the sake of a simpler example, let’s shift for a
moment to comparing a fixed-length experiment that involves tossing a
coin three times with a flexible-length experiment in which you toss the
coin until it lands heads. The possible outcomes of each of these
experiments are depicted in Figure 1.12. If the coin is fair (p = 0.5), each
specific sequence that can occur in the fixed length experiment has a
probability of L; in the flexible length experiment, the probabilities of the
different outcomes (reading from left to right) are w, M, w
Suppose you obtain tails on the first two tosses and heads on the third but
don’t know what the value of p is. The probability of obtaining the

sequence TTH is the same regardless of which experiment was performed:

, and so on.

Pr(TTH | there will be 3 tosses) = Pr(TTH | there will be exactly one H)
= p(1-p)"

35 This example is from Howson and Urbach (1993: 210-12); it is similar to an example given by
Lindley and Phillips (1976).
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HHH
HHT
HTH
THH

(b) H TH|[TTH| TTTH TTTTH TTTTTH ...
HIT ™
THT

TIT

actual outcome

Figure 1.12 If a coin lands tails on the first two tosses and heads on the third, this
outcome might be the result of two different experiments: (a) toss three times; (b)toss
until heads occurs once (from Goodman 1999: 1000). The possible outcomes of both

experiments are shown.

This means that if you are testing the hypothesis that p = 0.5 against the
hypothesis that p = 0.9, the following equality obtains

Pr(TTH | p = 0.5 & there will be 3 tosses)
Pr(TTH | p = 0.9 & there will be 3 tosses)

_ Pr(TTH|p = 0.5 & there will be one heads)
~ Pr(TTH|p = 0.9 & there will be one heads)

This equality indicates why Bayesians say that the choice of stopping rule
is not relevant to the interpretation of the observations; the weight of
evidence (as measured by the likelihood ratio) is the same, regardless of
which experiment you performed. Returning to our initial example,
I hope it is clear why it doesn’c matter to the likelihoodist whether you
obtained six heads in a fixed length experiment of twenty tosses or if it
took you twenty tosses to obtain six heads in a flexible length experiment —
the meaning of the evidence is the same.

Why does the difference between the two experimental designs matter to
the significance tester? The answer begins with the fact that significance
tests require you to consider the probability under the null hypothesis of a
logically weaker description of the data — that you obrained the test result or
ones that are at least as improbable. If the null hypothesis says that p = 0.5,
the probabilities you need to think about to perform a test of significance
for the fixed and the flexible length experiments are, respectively,

(Fixed) Pr(0—6 or 14—20 heads|p = 0.5 & there will be 20 tosses)
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Pr Pr

0 6 10 14 20 6 12 18 20 40
Number of heads Number of tosses

(fixed) (flexible)

Figure 1.13 Suppose that a fixed-length experiment in which a coin is tossed twenty times
and a flexible-length experiment in which a coin is tossed until six heads occur both
result in six heads in twenty tosses. In each case, a significance test of the null
hypothesis that the coin is fair focuses on the probability of obtaining that result
or ones that are at least as improbable.

and

(Flexible)  Pr(20 or more tosses | p = 0.5 & there will be 6 heads).

The relevant regions of the two outcome spaces that the two significance
tests consider are shown in Figure 1.13. It turns out that (Fixed) has a
value of 0.115 and (Flexible) has a value 0of 0.0319. If you set your level of
significance at @ = 0.05, you should not reject the null hypothesis if you
performed the fixed experiment, but you should reject the null if you
performed the flexible. Which experiment you performed to obtain your
six heads in twenty tosses makes all the difference.?®

It is not a unique feature of significance tests that the probability the
null hypothesis confers on a logically weakened description of the data
depends on which experiment was performed. Consider the simpler
example depicted in Figure 1.12. You tossed the coin three times and
obtained the exact sequence TTH. As already noted, this description of
the data has a probability of } under the null hypothesis that p=0.5

regardless of which experiment was performed. However, with a logically

36 The same result can arise in Neyman-Pearson hypothesis testing, for example, if the null
hypothesis is tested against the composite alternative that p # 0.5 (Howson and Urbach
1993: 211).
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weaker description of the data (in which you describe the mix of heads
and tails but omit to mention their order), this agreement dissolves:
3

Pr(2T and 1H | Null & there will be 3 tosses) = 3"

Pr(2T and 1H | Null & there will be just 1 H) = W
As shown in Figure 1.12, there is just one way to get two tails and one
heads in the flexible experiment, but there are three in the fixed-length
experiment. The point is that likelihoodists don’t care about the values
of these single conditional probabilities but only about the values of
various ratios, whereas significance testers think that what matters is
the value of a single conditional probability — (Fixed) or (Flexible) as the
case may be.

Given the importance that significance testers assign to the choice of
stopping rule, what should they say about experiments in which it is
unclear which stopping rule was actually used? Howson and Urbach
(1993: 212) describe the following example. Suppose two scientists col-
laborate to perform a coin-tossing experiment; they obtain six heads in
twenty tosses (with the sixth head occurring on the last toss) and then sit
down to write an article in which they report their results, thinking that
nothing is amiss. It then emerges that they had different plans in mind;
the first scientist thought the plan was to toss twenty times; the second
thought the plan was to toss until six heads occur. Of course, they should
have talked things through beforehand, but what are they now to do?
According to the logic of significance tests, they need to figure out what
they would have done if other results had emerged. If they had obtained
the sixth head on the nineteenth toss, would they have continued the
experiment? If they had obtained only five heads by the twentieth toss,
would they have persevered? Answering these questions requires infor-
mation about the power relations between the two experimenters. Perhaps
you are inclined to say that it doesn’t matter what they would have done if
the results had been otherwise; what matters is the results they in fact
obtained and this result can be interpreted without psychoanalyzing the
two scientists. If so, you are thinking like a likelihoodist.

Defenders of significance tests often suggest that Bayesians are hope-
lessly uncritical of how experiments are designed but that frequentists, in
this respect, have their heads screwed on right. Suppose I decide to
continue tossing a coin until I obtain results that go against the null
hypothesis. If so, I apparently know in advance what conclusion I'll draw.
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But if I cannot fail to reject the null hypothesis, regardless of whether that
hypothesis is true, how can the experiment be said to test that hypothesis?
And if the experiment doesn’t test the null, why bother to run it in the
first place? Frequentism explains why it is pointless to do this experiment,
but frequentists often claim that Bayesians have a blind spot here;
Bayesianism, they say, holds that there is nothing wrong with running this
type of “try-and-try-again” experiment (Mayo 1996). What is even more
galling to frequentists is that Bayesians have the temerity to proclaim this
a virtue of their position, rather than acknowledging it to be the
embarrassment to Bayesianism that it truly is.

This criticism of Bayesianism is sometimes stated as a very general
claim: That Bayesianism never accords any epistemic import to the design
of experiments and can offer no rationale for declining to perform
experiments whose outcomes are known in advance. This criticism is
vastly overstated, as a simple example from Eddington (1939) illustrates.
You throw a net in a lake and wait until fifty fish have been caught. You pull
the net out and see that all fifty fish are more than 10 inches long. How does
this observation bear on the following two hypotheses? A says that all the
fish in the lake are more than 10 inches long; H, says that 50 percent of the
fish are more than 10 inches long. Your first impulse is to think that the
observations favor H; over H, but then you realize that this interpretation
depends on what the net was like. If the net has 1 inch holes, the inter-
pretation makes sense, but if the holes are 10 inches across, the observation
fails to discriminate between the two hypotheses. The general point is that
the bearing of observations on hypotheses often depends on the methods
used to obtain the observations. When the outcome of an experiment is
knowable beforchand and does not depend on which hypothesis is true,
there is no point in performing this experiment; the law of likelihood
provides a perfectly straightforward explanation of why this is so.?”

Setting this hyperbolic criticism of Bayesianism to one side, let us look
in more detail at fixed- and flexible-length experiments of the kind
described in Figures 1.12 and 1.13. Let’s begin by getting the facts straight
in connection with frequentism. Consider an experiment that ends precisely
when a significance test takes the data to indicate that the null hypothesis
should be rejected. It is a certainty that this experiment will end if one
uses the “nominal” value for the level of significance (Anscombe 1954).
Using the nominal value means that at each stage one pretends that

37 1 discuss Eddington’s example of an observation selection effect in connection with the fine-tuning
version of the design argument in Sober (2004b).
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the data were the result of an experiment designed to have that number of
observations. Since this experiment’s outcome is known in advance and
does not depend on whether the null hypothesis is true, frequentists think
there is an excellent reason not to run it. However, they are not opposed
to “sequential trials.” Armitage (1975) has described a protocol for such
experiments in which one uses the “overall,” rather than the “nominal,”
value for the level of significance. This new concept has the consequence
that it is no longer a certainty that the experiment will end, and so it is no
longer crazy, from a frequentist point of view, to run it. Armitage also
describes how sequential trials can be structured so that accepting the null
hypothesis as well as rejecting it is a possible outcome.

To understand what Bayesianism and likelihoodism say about this
problem, we must be careful not to saddle these frameworks with ideas
that are alien to them. Neither uses significance tests, and their experiments
don’t end with the “acceptance” or “rejection” of the null hypothesis.
Both interpret experimental results by using the law of likelihood, so we
need to be explicit about the alternative to the null hypothesis that is in
contention. To this end, let’s suppose that the null hypothesis (Hp) says
that p = 0.5, that the alternative hypothesis (/,) says that p = 0.9, and
that the experiment you undertake will stop precisely when the frequency
of heads engenders a likelihood ratio of Hj to H; that is less than or equal
to 1/k (where k > 1). If Hy is true, is this experiment bound to end, thus
resulting in misleading evidence that favors H,;? Robbins (1970) has
shown that the probability of this experiment’s ending when Hj is true is
less than or equal to 1/4. If you define “strong evidence against the null”
to mean a ratio that is less than , then the probability of this misleading
result is less than §. Commenting on this point, Royall (1997: 7) says that
“if an unscrupulous researcher sets out deliberately to find evidence
supporting his favorite but erroneous hypothesis [...] over his rival’s
[...] which happens to be correct, by a factor of at least 4, then the
chances are good that he will be eternally frustrated.” Notice that this
point has nothing to do with the prior or posterior probabilities of the
hypotheses; it falls strictly within the likelihood framework.?®

38 Kadane et al. (1996) obtain similar results bur within a fuller Bayesian framework and using the
strong assumption of countable additivity. Suppose you decide to end the experiment precisely
when the posterior probability assigned to H; exceeds some value v. If your prior for /; is r, the
probability that the experiment will end, if Hy is true, is no more than » (1—-2) / (1 —7) v. So if Hy
and H; each have priors of 1, and you don’t stop the experiment undl A, has a posterior
probability of at least 0.9, the probabilicy of the experiment’s ending is no more than 0.11. Notice
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Thus, the try-and-try-again design in which you end the experiment
only when you've obtained strong evidence against Hj is not bound to
end, if the criterion for its ending is formulated in terms of the likelihood
ratio. If there is something wrong with this experimental design, it is not
that you know in advance what will happen. One defect, noted by Teddy
Seidenfeld, is that if the null hypothesis is true, this experiment has a serious
chance of going on forever; if experiments cost money to run, Bayesians
with finite funds have a good reason not to use this experimental design
(Backe 1999: $360).>° Fortunately, there are other designs that are far more
sensible; for example, you could continue drawing evidence until strong
evidence favoring H, over H;, or strong evidence favoring H; to Hy, is
obtained. The probability that this even-handed experiment will end,
sooner or later, is unity (Wald 1947: 37—40; Backe 1999: $359); of course,
it is not a foregone conclusion which result you’ll obtain.

Where do these points leave the optional stopping problem? Signifi-
cance testers abhor the try-and-try-again experimental arrangement when
carried dbut with “nominal” p-values. However, with “overall” p-values,
sequential experiments are not beyond the frequentist pale. And if you
organize your test along Bayesian or likelihoodist lines, it is not true that
try-and-try-again must result in the experiment’s ending (where ending
means attaining a likelihood ratio that represents strong evidence against
the null). This shows that if the experiment does end, you really do have
evidence (as defined by the likelihood ratio). Bayesians think that both the
design of experiments and the interpretation of the results obtained are
important topics; this is Hacking’s (1965) distinction between before-trial
betting and after-trial evaluation (§1.5). It is frequentists who often do
not see the second as a problem separate from the first.

1.7 FREQUENTISM III: MODEL-SELECTION THEORY

The keys and the lamppost

When 1 raised the objection that Bayesianism often has no objective basis
for assigning values to prior probabilities or to the likelihoods of catchall
hypotheses, I did not describe a different theory for assigning such values

the relationship to the likelihood ratio in this example; given these values for » and v, the
experiment ends precisely when the likelihood ratio of Hy to H; is § or less.

39 Compare Jeffrey’s (1983: 154) response to the St. Petersburg paradox: The bargain you are offered
must be fraudulent, since no one has an infinite amount of money.
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and then argue that this different theory is bester than Bayesianism. No,
what I did was change the subject. I retreated to likelihoodism, which
addresses a different question — the question of how evidence ought to be
interpreted. This pattern of shifting questions is not unique to the
foundations of statistics nor is it unique to philosophy. Though politics is
often called “the art of the possible,” science deserves to be described in
this way as well. If one problem cannot be solved, there is no reason why
another should not be taken up that can. The only sin is to give the false
impression that a new theory solves the same problem that an old one was
unable to address. Science is sometimes like the man searching under the
lamppost for the keys that he misplaced. When asked why he is searching
there, he replies that that is where the light is. He does not reply that that
is where his keys probably are.

In the previous two sections, I explained the rudiments of significance
tests and of the Neyman—Pearson theory of hypothesis testing. I described
some serious (and standard) objections to each. However, as mentioned at
the start of the discussion of frequentism, this statistical philosophy is not
a unified theory; rather, it is a loose confederation of ideas. The criticisms
I've made of significance tests and of hypothesis testing don’t necessarily
attach to other frequentist ideas. The part of statistics called model-selection
theory may have its problems, but it avoids the problems we so far have
identified. There is no need to decide which hypothesis to call the null,
and there is no need to choose a value for a. Indeed, there is no such thing
as acceptance and rejection in model-selection theory. The name of this
part of statistics is misleading; the problem addressed is one of model
comparison, not model selection. Before we consider some of the solutions
that have been proposed to the problem of model comparison, we need
to understand what the problem is. An important element in this field has
been the articulation of a new question: How should we estimate how
accurate a theory’s predictions will be?

Model building in science: Two pervasive patterns

In many areas of scientific research, a great deal of effort goes into the
construction and evaluation of “models.” This term has a technical
meaning in statistics and a somewhat different nonmathematical meaning
in the sciences themselves. As noted in the discussion of LIN and PAR in
the previous section, models in the statistical sense of that term contain
adjustable parameters; the statement that X and Y are related linearly is a
model, while the statement that y = 3 4 4x is not. This specific straight-line
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equation has been obtained from the linear model by substituting point
values for adjustable parameters. When scientists use the term “model,”
they often have a different idea in mind. For them, a model is a simplified
hypothesis; it purports to explain or predict a set of observations without
trying to represent all the factors that are relevant. Models are not fully
realistic; rather, they contain idealizations. Physicists work with models
that assume that planets are spherically symmetrical, that particles collide
with perfect elasticity, and that balls roll down inclined planes that are
perfectly frictionless; evolutionary biologists consider models that assume
that populations are infinitely large, that mating is petfectly random, and
that a trait has a single unchanging fitness value in each of the many
generations of the population in which the trait evolves. These models are
known to be false, but they are not dismissed out of hand. The hope is
that there may be truth in these falsehoods. If the idealizations are
harmless, their departures from the truth won’t matter much; these
idealized models will yield accurate predictions even though they are false
(McMullin 1985; Hausman 1992). If your goal is to predict how much
time a ball will take to roll down a ramp, assuming that the ramp is
perfectly frictionless may be fine if the ramp is nearly frictionless and your
measurements are somewhat vaanmo.Ao

There are two pervasive facts about the use of models in science that are
of considerable philosophical significance. The first is that scientists often
test models that they know are false. This is especially clear for many of
the hypotheses that are labeled null models. This term is often applied to
hypotheses that say that there is no difference between two quantities. The
hypothesis that two ficlds of corn plants have the same mean height is a
null hypothesis in this sense; the same is true of the hypothesis that a coin
is fair (since it says that there is no difference between the chance of heads
and the chance of tails). It is interesting that we often know, with as much
certainty as we can ever have in science, that these so-called null
hypotheses are false. Consider the coin. Do you really think that the coin
is exactly symmetrical, that the chance of heads (p) is exactly equal to the
chance of tails (1 — p) on each toss and that this precise symmetry remains
in place each and every time the coin is tossed? I, personally, do not. My
expectation is that there are modest asymmetries in the shape and balance

“ There is a third use of the term “model” found in the part of logic called model theory. Here a
model is a set of objects, properties, and relations that make a set of sentences true. In this usage,
models are not propositions. For historical and philosophical reflections on the use of models in
science, see Hesse (1966), Morgan and Morrison (1999), Da Costa and French (2003), and Frigg
and Hartmann (2006).
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of the coin; I am virtually certain that p # 1. I also feel pretty sure that the
coin changes its shape, if only slightly, during its lifetime. So why do
scientists bother to test the simple hypothesis that p = 1 against the
composite hypothesis that p # 1?2 Or consider the two fields of corn. The
null hypothesis says that there is no difference in their average heights.
Again, I find myself as certain as I am about almost anything that this null
hypothesis is not true. The falsity of the null hypothesis, of course, is not
an 4 priori matter; however, I suggest that our empirical experience of the
world assures us that the two means are not exactly the same (to 1 million
decimal places and more). Yet, scientists test the null hypothesis that the
difference is zero against one or another alternative hypothesis.

Given that null hypotheses are often known to be false before any
statistical test is run, it is not surprising that statisticians sometimes argue
thar these null hypotheses are not worth testing (see, for example, Yoccoz
1991 and Johnson 1995). I do not draw this conclusion. If the goal of
scientific inference were just to find out which theories are true, dismissing
such null hypotheses without testing them would make sense. But if the
goal is to discover which theories will make accurate predictions, there may
be a point in testing null hypotheses. Maybe hypotheses known to be false
will make accurate predictions. And if a// the hypotheses under test are
known to be false (since all conrain idealizations), it may still be worth-
while to determine which of them can be expected to make the most
accurate predictions. If idealized (and therefore false) models are proper
objects of scientific testing, we need to change our conception of what the
goal of scientific reasoning is. Bayesianism is usually understood as a theory
for deciding which hypotheses are probably #ue; the Neyman—Pearson
theory concerns which hypotheses we should accept as zrue and reject as
false; and likelihoodism tells us whether our evidence favors the hypothesis
that H is true over the hypothesis that A is true. Truth enters into each of
these theories of inference. This obsession needs to be overcome.

A second fact about model building in science also is pregnant with
philosophical meaning. It concerns an experience that scientists often have
when they use models that are very complex. When scientists consider a
body of dara that they suspect was produced by multple causes that
interacted in complex ways, they may be tempted to invent a complex
model as an explanation. Doesn’t a complex reality need a complex theory
to do it justice? However, when such models are fitted to the data by
finding the maximum likelihood estimates of their adjustable parameters
(as we did in the example in §1.5 about the pressure cooker), those fitted
models often do 2 rerrible job of predicting new dara drawn from the
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same system. Here’s an example that illustrates the kind of pattern I have
in mind. Suppose you made n observadons of <xy> pairs during your
experiment with the pressure cooker. It is a mathematical face that a
polynomial of degree # — I can be found that fits those » data points
perfectly. If you made two observations, there is a straight line (a first-
degree polynomial) that passes exactly through thems; if you made three
observations, there is a parabola (a second-degree polynomial) that does
the same thing. And so on. Sadly, the mathematical assurance that a
sufficiently complex polynomial will fic the old data perfectly is no
guarantee that the fitted polynomial will do a good job predicting new
darta. In fact, scientists often find that complex models do very poorly in
predicting new data when fitted to old. Simpler models often do better.
Here the complexity of a model corresponds to the number of adjustable
parameters it contains.

Given this common experience that model-builders have, it may seem
that the only lesson is the following vague rule of thumb: Don’t make
your médels too complicated or too simple, either. This advice is sensible,
but it isn’t very helpful. How complicated is oo complicated? What is
remarkable is that this advice can be made more precise. Work in model-
selection theory has shown that, in a variety of circumstances, it is possible
to estimate how accurately a model will predict new data when it is fitted
to old. There is much that remains to be learned about the mathematical
underpinnings of this area, but what is striking is that there are mathe-
matical structures here to be investigated. The fact that models that are
very complex are often not good at predicting new data when fitted to old
is not a brute fact. Rather, there is a body of mathematics that explains
why complex models are often poor predictors and allows scientists to
take measures to avoid using models that are too complex.

Akaike’s framework, theorem, and criterion

Model-selection theory began as a subject in statistics with Hirotugu
Akaike’s 1973 paper. Akaike identified a problem, and he proposed a
solution to it. It is important to keep separate these two parts of what he
accomplished, since the problem he singled out for study has an
importance that transcends the solution to the problem that he proposed.
This is because the subject he founded led to the discovery of different
solutions that are appropriate in different settings. There now are multiple
model-selection criteria on the market, and it is widely recognized that
different criteria should be used for different model-selection tasks.
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Figure 1.14 The prediction problem that Akaike considered. From the old data and a
model you can deduce what the likeliest member of that model is. Thar likeliest
model then makes probabilistic predictions about new data. Which model, LIN or
PAR, will do better in predicting the new data when fitted to the old? Deductive
relations are indicated by solid arrows, probabilistic by broken.

A simple version of the kind of problem that Akaike discussed is
depicted in Figure 1.14. LIN and PAR are the two models we examined
in §1.5 of how temperature and pressure are related in the pressure
cooker. You use the available data to find the maximum likelihood esti-
mates of the parameters that each model contains; that is, you use the data
to find L(LIN) and L(PAR); L(LIN) is the member of LIN that has the
highest likelihood, and L(PAR) is likewise the maximum likelihood
member of PAR. You then ask the following question: If you were to
draw new data from the pressure cooker, would L(LIN) or Z(PAR) do a
better job predicting this new data? I hope the reader finds it puzzling
how this question could be answered. The only data you can consult is the
old data you already drew from the pressure cooker. Since LIN is nested
inside PAR, you know in advance that Pr{old data| Z(PAR)] > Prlold data
| LILIN)], no matter what the old data are. The only way the two fitred
models can have exactly the same likelihoods is if the data fall exactly on a
straight line; otherwise L(PAR) will have the higher likelihood. As already
noted, more complex models inevitably fit the data at hand better than
simpler models. But we know from experience that more complex models
often do worse at predicting, not better. What else is there to consider
here besides the likelihoods of L(LIN) and L(PAR)?

Bayesians may feel inclined at this point to appeal to the prior prob-
abilities of LIN and PAR. But here we run into a wall. Since LIN entails
PAR, Pr(LIN) < Pr(PAR). The simpler model cannot have the higher
prior probability — a point that Popper (1959) emphasized. This problem

can be circumvented if we stipulate that the only models we are willing to
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consider must be incompatible with each other. For example, if we
require that LIN and PAR be set aside, and LIN* and PAR* considered
instead (where all the parameters in this latter pair of models have non-
zero values), the axioms of probability theory do not settle in advance
which of the two has the higher prior probability. But even though it is
logically consistent to say that Pr(LIN*) > Pr(PAR*), it is hard to sce
how this can be anything more than a stipulation. Consider the parameter
¢ that attaches to the squared term in PAR*. The claim that Pr(LIN*) >
Pr(PAR*) is equivalent to the claim that Pr(c = 0) > Pr(c # 0). What
objective reason could there be for thinking that this inequality is true?
Let us make the prediction problem more precise. After you draw the
old data and use them to identify L(LIN) and L(PAR), you want to know
how well these two curves will predict new data drawn from the same
pressure cooker. But there is no one form that the new data set must take.
Different data sets will differ from each other, though all are produced by
the same underlying mechanism. The reason for expecting variability
among data sets is that observations are subject to error. This means that
when we ask how well a given fitted model will do in predicting new data,
what we want to ascertain is how well it will do on average in this
prediction task. L(LIN) may accurately predict one new data set but do
less well in predicting another. By the predictive accuracy of a model M we
mean how well oz average M will do when it is fitted to old data and the
fitted model is then used to predict new (Forster and Sober 1994).
Imagine carrying out the task described in Figure 1.14 again and again.
The expected performance of a model is what we want to know about.
There is a second refinement that needs to be added to this definition
of predictive accuracy. What does it mean to talk about how accurately
L(LIN) or L(PAR) predicts a single new observation in the pressure-
cooker experiment? This new observation takes the form of a pair of
temperature and pressure values <x, y>. When the temperature value x is
fed into L(LIN) or into L(PAR), the output is a predicted value for the
pressure y. We then can determine how close or far away the predicted value
for y is from the observed value. We might do this by taking the difference
between the two values and squaring it. Greater accuracy then means a
smaller squared distance. Or we might compute the value of Pr(observed
pressure value y| fitted model & temperature value x), with a larger like-
lihood indicating a higher degree of accuracy. These two approaches are
related, in that squared distance is inversely related to likelihood, given
some standard assumptions. The next question is how we should measure
accuracy of prediction when there is more than one data point in the new
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data set. We could sum the squared distances or we could compute the
likelthoods relative to all the new data. But notice that as the data set we
are trying to predict gets larger, the sum of squares increases and the
likelihood must decline as more and more terms are multiplied together.
The problem is that we want to define the notion of predictive accuracy
so that it does not turn out that a model is automatically less predictively
accurate with respect to a larger data set than it is with respect to a smaller
one. This is a general point about how we want to conceptualize mea-
surement devices. When we ask about the accuracy of a bathroom scale or
a thermometer or a tuberculosis test, the answer should not depend on
how many times the device is used. A natural solution is to think of the
predictive accuracy of a model as its average accuracy per datum (Forster
and Sober 1994; Forster 2001). This point about the concept of pre-
dictive accuracy is not in Akaike (1973); he was thinking about model
comparison where all the models are asked to predict the same new data
set, which contains the same number of observations that the old data set
conuained. In this context, the difference between per datum predictive
accuracy and total accuracy over the entire data set does not mateer. For
the moment, I'll follow Akaike’s lead and omit mention of the fact that
predictive accuracy is a per datum quantity. Later on, I'll return to the
question of how larger and larger data sets should be brought into the
picture.

After isolating the prediction problem of estimating how accurately a
model will predict new data when fitted to old, Akaike (1973) derived a

result that bears on it:

Akaike’s Theorem: An unbiased estimate of the predictive accuracy
of model M = log{Pr[data|L(M)]} — £.

We use the old data to find the likeliest member of model M and then
take the natural logarithm (= base ¢) of its likelihood. We then subtract 4,
which is the number of adjustable parameters that the model contains.
Notice that Akaike’s estimate pays attention to both the model’s fit to
data and its simplicity. Akaike’s theorem led to the formulation of the
following model-selection criterion:

The Akaike information criterion (AIC): The AIC score of a model A,
AIC(M) = gt log{ Pr{data | L(M)]} — &.
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The absolute value of a model’s AIC score is not what is interesting about
this criterion. What matters is how the scores of different models compare
when the models are fitted to the same data set. AIC is a proposal that
addresses the task of model comparison, not the task of model acceprance
and rejection (Sakamoto et al. 1986: 84).41

How will the AIC scores for LIN and PAR compare? PAR will have a
higher value for the first addend than LIN; L(PAR) will have the higher
likelihood, and therefore the higher log-likelihood. But PAR contains one
more adjustable parameter than LIN; in this respect, PAR is worse than
LIN. Each model has one piece of good news and one piece of bad. The
AIC scores of the two models depend on the character of the data. With
some possible data sets, LIN will score better; with others, PAR will. The
question is whether the data at hand depart sufficiently from linearity to
justify the loss in simplicity that comes from shifting from LIN to PAR.
AIC provides a principled basis for deciding how fit-to-data should be
traded off against simplicity.

Three *questions need to be answered about Akaike’s theorem. What
does “unbiased” mean? How is Akaike’s theorem related to AIC? And
what are the assumptions from which the theorem was derived?

A bathroom scale provides an unbiased estimate of your weighe if the
average of its values over many weighings is your true weight. In this
hypothetical run of tests, we assume that your true weight remains the
same. An unbiased estimartor is centered on the true value; if your true
weight is x, the expected value of the scale’s readings is x. However, an
unbiased scale may on any given occasion provide an estimate that is way
too high or an estimate that is way too low. How much (squared) vari-
ation there will be, on average, among different estimates is called the
variance of the estimator. A reading produced by a scale that has a high
variance may have a very small probability of being close to the true
value.?? The best bathroom scale would be unbiased and have very small
variance, but suppose you had to choose which of these virtues you prize
more. Suppose one scale is perfectly unbiased and has large variance while
a second has a small bias and a small variance. It is easy to imagine
preferring the second to the first; this scale tends to read too high or tends

41 1 have presented AIC as a measure of predictive accuracy, so models with bigger scores are better
than models with smaller ones. The reader should realize that AIC is usually presented as an
expected distance from new data, in which case models are better the smaller their scores.

42 Consider Figure 1.2 and suppose that the curves shown there represent the readings that three
different unbiased scales might produce when an object that weighs 78 pounds is placed upon
them.
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to read too low (you don’t know which) but it rarely is off by more
than an ounce. This scale might be better than one that is centered on
your true weight but tends to swing from 10 pounds too light to 10
pounds too heavy. These considerations indicate that it would be desir-
able to show, not just that AIC is an unbiased estimator but also that it is
an estimator of minimum variance, or that it has a lower variance than
other estimators that one might use. Akaike’s theorem does not address
this question; Sakamoto et al. (1986: 76-80) describe the variance of AIC
estimates, but there is more to be learned about this subject. In any event,
recall the frequentist setting of these questions about unbiasedness and
variance. We are discussing the “operating characteristics” of a general
policy, that of using AIC to estimate the predictive accuracy of models.
Even if AIC is unbiased and has a low variance, that does not entail that
when LIN scores better than PAR with respect to the data drawn from
your pressure cooker, that LIN will probably be more predictively
accurate. Posterior probabilities require priors, and this is something that
frequentists disdain.

I turn next to the assumptions that Akaike used to prove his theorem.
Akaike’s proof uses the “normality assumptions” that are frequenty
exploited in mathernatical statistics. This means, roughly, that each of the
parametets in the model whose value you need to estimate will be such
that repeated estimates form a normal distribution. There is, second, the
assumption that old and new data sets are drawn from the same
underlying reality. When you accumulate a data set on your pressure
cooker and decide which of LIN and PAR will be more predictively
accurate with respect to a new data set you have yet to see, you need to
assume that the true but unknown law governing the pressure cooker
won’t change between your old observations and your new ones. Tem-
perature and pressure must be related to each other in the same way
across all data sets. There is a third assumption that goes into the proof.
Your old data were accumulated by looking at various temperature val-
ues. These were chosen in accordance with some sampling procedure;
perhaps these temperature values were drawn at random from a range of
values. The theorem assumes that your new data will be drawn from the
same distribution of temperature values. So, the relationship of Xand Yis
the same across data sets and so is the distribution of X values. Together
these constitute a Humean wuniformity of narure assumption (Forster and
Sober 1994).

This last assumption means that Akaike’s theorem and his criterion
do not apply to inference problems in which you are trying to



88 Evidence

extrapolate — situations in which your sample is constrained to come from
one range of temperature values and you want to make a prediction
concerning what is true outside that range (Forster 2000b, 2001). It is
useful to think about this point in relation to the fact that AIC is
asymptotically equivalent with a different model-selection method that
is called take-one-out cross-validation (Stone 1977). The cross-validation
criterion makes no mention of simplicity. Rather, to test a model like
LIN, you set aside one of the » data points in the sample, fit LIN to the
n — 1 data points that remain, and then see how well L(LIN) predicts the
data point that was set aside. The procedure is repeated for each of
the other data points; then you compute the average performance of the
model across these 7 trials. That’s the cross-validation score of LIN. The
same procedure is carried out for other models and then the scores of
different models are compared. Cross-validation is a gencral kind of
procedure in which one gauges a model’s performance by dividing one’s
data into a training (or calibration) set and a prediction (or test) set. In the
application just described, the # data points ate divided into » — 1 for
training and 1 for prediction. This is called take-one-out cross-validation.
The cross-validation framework also allows you to consider take-two-out,
take-three-out, and so on. It is possible that one model scores berter
than another in terms of take-one-out, while the reverse is true for take-
ten-out. The fact that AIC is equivalent with the former rather than the
latter is telling. AIC is a solution to one prediction problem, but there
are others.

It is interesting how AIC’s comparison of LIN and PAR changes as the
size of the data set increases. Consider the fact that a model’s AIC score is
influenced by two quantities, but only one of them changes as more data
accumulate. The log-likelihoods of L(LIN) and L(PAR) both decline as
more data roll in, but the number of adjustable parameters in each model
of course stays the same. We know from the definition of AIC that
AIC(LIN) > AIC(PAR) precisely when

log{ Pr[data | L(LIN)]} — log{Pr[data| L(PAR)]}> — 1.

The reason “—1” is on the right-hand side of this inequality is that PAR

has one more adjustable parameter than LIN. Thus, what we want to
know is whether

%\_QMQ_NAEHZ:
_omAE&s _ E?B@ > 1

Evidence 89
and (since the logarithm is base e ~ 2.72) this is true precisely when

Prldata | L(LIN)] |
(&) Pridata | Z(PAR)] ~ 272~ 37

This inequality describes what it takes for LIN to have the higher of the
two AIC scores. It may be true for small and middling sized darta sets, but,
with a sufficiently large data set, the inequality must be false; PAR must
score better.*® This is a sensible feature of AIC; the greater simplicity of
LIN over PAR can compensate for L(LIN)’s lower likelihood for some
sample sizes, but eventually it cannot. If there is a slight parabolic bend in
the data, you might want to ignore this when sample sizes are small, but if
the bend is still there when you have lots of data, you’d be foolish to
ignore it. The impact of simplicity on model evaluation should depend on
sample size. The prediction problem that AIC is meant to address
involves using an old data set to predict a new one of approximately the
same size. If LIN scores better than PAR, given the data you have at hand,
it does not follow that LIN would score better on a data set that is vastly
larger.

The likelihood ratio test (§1.6) also applies to models like LIN and
PAR, so it is useful to review some differences between it and AIC. First,
there is the fact that the likelihood ratio test gives advice about whether
the null hypothesis should be rejected; it therefore requires an arbitrary
decision about how small the likelihood ratio of the two fitted models
must be for one to reject the null. In contrast, AIC gives advice about
model comparison, not model acceptance and rejection, and what it
compares are estimates of predictive accuracy, not truth. Second, the
mathematical underpinnings of the likelihood ratio test sanction its use
only on nested models, but what could it mean to accept LIN and reject
PAR, given that LIN entails PAR? The mathematics behind AIC justify
its use on nested and non-nested models alike. Third, the likelihood ratio
test violates the principle of total evidence; one doesn’t look at the point

43 Recall the point in §1.2 about the two witnesses whose testimonies agree. The fact that the
testimonies are independent of each other, conditional on the proposition reported, was important
in that discussion; similarly, in the present context, each datum is independent of every other,
conditional on L(LIN) and conditional on L(PAR). When a small number of independent and
reliable witnesses all say that proposition P is true, it is an open question whether the likelihood
ratio of P to notP will exceed some threshold; but for any threshold you specify, the likelihood
ratio must exceed that threshold if there are sufficiently many unanimous witnesses. Similarly, if
the data set is large enough, the log-likelihood of L(PAR) will exceed that of L(LIN) by any
threshold you name, including the one described in proposition (A).
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values in the data but only at a logically weaker description that says
whether or not those data points fall in a given region. AIC abides by the
principle of total evidence.

Identifiability

AIC penalizes models for being complex, but there are some models that
are so complex that AIC does not even apply. It isn’t that models that
have more than 23,453,450,965 parameters are in principle beyond the
pale. Rather, the limitation I have in mind comes from the number of
data points in the observations one has at hand. A model with more
parameters than there are data points will (typically) not be identifiable.
A failure of identifiabilicy means that there is no such thing as #he maxi-
mum likelihood estimate of the parameters that the model contains. This
failure of uniqueness can occur even in simple models, provided that the
data set is sufhciently small. Consider our old friend LIN, a simple model
if ever there was one. Suppose your data set consists of a single daca point.
There are infinitely many straight lines that pass exactly through this
point; each has a likelihood that cannot be bettered. What would it mean
to talk about LIN’s predictive accuracy in this case? One would have to
envision fitting the model to this single datum and then using “the” fitted
model to predict other data sets that contain a single new data point.
However, there is no such thing as “the” fitted model in this case. AIC
does not even apply.

A data set that conrains a single observation may seem like a joke, but
the point about identifiability applies to the larger data sets that scientists
actually use. AIC cannot be applied to models that are not identifiable.
This means that our data limit the kinds of theories we can evaluate. In
contrast, Bayesianism does not prohibit the assignment of prior prob-
abilities and likelihoods to such models; for subjective Bayesians, such
quantities are always well defined. Wittgenstein says in the last line of the
Tractatus that whereof one cannot speak, one must remain silent. AIC
embodies a kind of Wittgensteinian circumspection; Bayesianism is

bolder.

Is AIC statistically inconsistent?

I mentioned earlier that estimators can be assessed for their unbiasedness
and for their variance. I now want to consider a third property of esti-
marvors that one might value or even demand. This is the property of
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statistical consistency. Don’t confuse this with the property of logical
consistency. An estimator is statistically consistent when it converges on
the true value of the parameter being estimated as more and more data are
added. For example, suppose you want to infer the probability a coin has
of landing heads when it is tossed. The policy of using the frequency of
heads in a sample of tosses as your estimate is statistically consistent (a
point that arose in connection with Reichenbach’s straight rule in §1.2).
This is the method of maximum likelihood estimation; by using this
procedure, the estimate will converge on the true probability of heads as
the number of tosses is increased. Does AIC converge on the true value of
a model’s predictive accuracy when the size of the data set is increased?
That is, if one model is in fact more predictively accurate than another,
can AIC be relied upon to award the first model the higher score as the
size of the data set is increased without limie?

The question of AIC’s consistency has often been misunderstood. The
question is not whether AIC converges on the frue model. AIC is not a
device for assessing which model is true but provides an estimate of a
model’s predictive accuracy (Forster 2001); as already noted, it is perfectly
legitimate to use AIC to evaluate a set of models all of which are known to
contain idealizations and so all are known at the outset to be false. Also,
when models are nested, you know in advance that the most complex
model is true if any of them are. There is no need to use data or a model-
selection criterion to ascertain this fact. Sometimes the question of con-
sistency has been taken to be whether AIC converges on the true model
that has the smallest number of adjustable parameters. So, if LIN and
PAR are both true, the task assigned to AIC is to converge on LIN when
the data are made large without limit. I pointed out before that this is not
something that AIC will do. As a data set is made larger and larger,
eventually the most complex model will have the best AIC score if the
models considered are nested. This is not a defect in AIC. This most
complex model is the model of greatest predictive accuracy for data sets
that are large enough; AIC has succeeded in converging on the best model
in that sense. However, the point of AIC is not to ascertain which models
will be most predictively accurate for enormous or infinite data sets; the
problem is to cope with the finite data sets one has at hand. If you make
200 observations of pressure and temperature on your pressure cooker,
the problem is to figure out which model will do best in predicting
what you’ll observe if you draw another 200; it is a different problem to
figure out which model will do best if old and new data sets contain
2,000,000,000,000,000 observations (Burnham and Anderson 2002: 298).
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Demanding that AIC converge on the most predictively accurate of the
models considered as data sets are made larger and larger is a bit like
demanding that a bathroom scale converge on your true weight as you get
heavier and heavier. The scale will fail to converge on a single value
because the target is moving, not stationary. It makes more sense to
demand that the scale’s readings be centered on your true weight. If you
weigh a single object of fixed weight again and again, will the average of
these weighings converge on the object’s true weight as the number of
weighings increases? This is what the scale will do if it is unbiased.
Repeatedly “weighing” a set of models using AIC will do the same thing,

since AIC is an unbiased estimator.

Bayesian model selection

The criticism that AIC is statistically inconsistent is often voiced in the
context of claiming that the Bayesian information criterion (BIC) derived
by Schwarz (1978) is better. BIC will converge on the smallest true
model, if the set of models you are considering includes one that is true.
However, it is questionable why consistency in this sense should be
thought a virtue if the competing models considered are not exhaustive; in
this case, there is no guarantee that any of them is true. Also, if the models
are nested, you know in advance that the largest model is true if any of
them are. Why is it important to converge on the smallest true model,
rather than on 4 true model? The latter task is easily achieved (if one of the
models is true) and no model-selection criterion is needed to do this; the
fact that the former task is harder does not explain why it is worthwhile.
Logically prior to this question about consistency is a more funda-
mental point of difference that separates BIC and AIC. As noted, the goal
of AIC is to compare different models for their expected predictive
accuracies. The goal of BIC, however, has nothing to do with predictive
accuracy. This model-selection criterion has a Bayesian goal: to estimate
the average likelihoods of composite models. LIN, for example, is an
infinite disjunction of different straight lines, each of which confers its
own probability on the data at hand. We saw earlier that the likelihood of
LIN must be a weighted average over the likelihoods of these different
straight lines, where the weighting terms have the form Pr(L; | LIN). Since
BIC aims to estimate Pr(data | LIN), the method must make assumptions
as to what values these weighting terms have. Those not sold on Baye-
sianism despair of grounding these weighting terms in anything objective,
and for that reason will be skeptical of BIC. Although a commitment to
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the values of these weighting terms must figure in any valid derivation of
BIC, the weighting terms do not appear in the final product, which is the
criterion that Schwarz (1978) derived for the average likelihood:

The Bayesian information criterion: The likelihood of model
M = log{Pr|data | L(M)]} — kllog(n)]/2.

Here, £ is the number of adjustable parameters in the model, and # is the
number of data. BIC imposes a bigger penalty for complexity than AIC
does; notice also that the second addend in BIC increases as the sample
size increases, which is not true of the second addend in AIC. Schwarz
(1978) derives BIC by assuming that the models under consideration have
the same priors. Given this assumption, the criterion not only estimates
average likelihoods; it also estimates posterior probabilities.

BIC is often applied to nested models, the idea being that BIC identifies
the model in the set of competitors that has the highest posterior prob-
ability. But, as already noted, no matter what the data say, LIN cannot be
more probable than PAR if LIN entails PAR. When models are nested, one
can tell & priori which model has the highest prior and the highest posterior
probability; there is no need to consult the data to figure this out and no
need to consult a model-selection criterion. If the data lead BIC to say that
LIN has a higher posterior probability than PAR, the Bayesian criterion has
simply made a mistake and its testimony should be set aside. This problem
can be avoided by restricting the application of BIC to non-nested models.

Although BIC was derived as a device for estimating average likelihoods
and posterior probabilities, we still may ask how well it performs as an
estimator of predictive accuracy. We know from Akaike’s theorem that AIC
is unbiased; since BIC differs from AIC by a constant, BIC must therefore
be a biased estimator of predictive accuracy. A further defect in BIC also
follows: BIC’s estimates of predictive accuracy have a larger expected squared
error than the ones generated by AIC (Forster and Sober, in preparation).

The debate over AIC and BIC needs to be understood, in the first
instance, as a debate over choice of goals — estimating predictive accuracy
versus estimating average likelihood. Only after a goal has been chosen can
the question be raised as to which criterion does better in achieving that goal.

The subfamily problem

A curve, since it contains no adjustable parameters, is a member of many
models. For example, “y = 3 + 4x” is a member of LIN, but it also is a
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member of PAR and of lots of other models besides. Given this, how is a
curve’s AIC score to be computed? Its log-likelihood is univocal, but what
penalty should we impose on it for its degree of complexity? If we view
the curve as a member of one model, we’ll apply one penalty term, but if
we view it as a member of a different model, we’ll apply another. This is
the subfamily problem (so called by Forster and Sober 1994).

One step towards solving this problem is to recognize that AIC applies
to models and that there is no need for AIC to say which model is the one
to which a curve “really” belongs. The predictive accuracy of a model is
its average performance as it is fitted to old data sets and then makes
predictions about new ones. There is no paradox in saying that LIN and
PAR may differ in their predictive accuracies even if LZ(LIN) and L(PAR)
happen to be identical curves in virtue of the (collinear) data set one has at
hand. AIC also applies to curves, but this is because curves are a limit case;
they are models that contain zero adjustable parameters. A curve’s AIC
score is just its log-likelihood (since its complexity penalty is zero). Thus,
it can turn out that “y = 3 + 4x” has a lower likelihood than “y = 3 + 4x
+ 0.001 x%,” and so the former has the lower AIC score, and yet LIN has
a higher AIC score than PAR, where the two curves happen to be the best-
fitting members of the two models, respectively. The two curves have
their own AIC scores, LIN has a third, and PAR has a fourth.

Although this point shows that AIC is not guilty of contradicting itself
(or of arbitrarily deciding which model a curve “really” belongs to), it
does leave another question unanswered. How should we use AIC to make
predictions? This is a pragmatic question in the sense of that term dis-
cussed earlier in connection with the principle of total evidence (§1.3).
Should we apply AIC to the two curves L(LIN) and L(PAR) and therefore
use the latter to make our predictions? Or should we apply AIC to LIN
and PAR and allow the data to help us decide which model is better?
Focusing exclusively on curves has the result that we always choose the
curve that comes from the largest model. The motivation for using AIC is
to find models that make accurate predictions; applying AIC only to fitted
models prevents the criterion from helping us to achieve that end. Burt
there is another reason to decline to use AIC in this way. AIC provides
unbiased estimates of predictive accuracy, regardless of whether it is
applied to LIN and PAR, or to LZ(LIN) and L(PAR), or to all four. One
reason to score LIN and PAR, rather than L(LIN) and L(PAR), is that
AIC has greater variance when it is applied to smaller models (Escoto
2004); applying AIC to fitted models is more apt to produce inaccurate
estimates of predictive accuracy.

mﬂ,ﬁd
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There is another dimension to this pragmatic problem. The fact that
AIC is a comparative principle, not a criterion for acceptance, shows that
it would be a mistake to make a prediction by using the model that has
the best AIC score while ignoring all the other models that were con-
sidered. After all, AIC is an estimator that is subject to error. This suggests
that predictions should be made by model averaging (Burnham and
Anderson 2002). If you want to predict the pressure that will result when
you set your pressure cooker to a given temperature, you should consider
the prediction made by the model with the best AIC score, the prediction
made by the second best, and so on. You can average these different
predictions by using AIC weights — giving more weight to predictions that
come from models that have better AIC scores.

The scope of AIC

I have used the models LIN and PAR to explain what AIC amounts to,
but this should not be taken to mean that AIC is relevant only to “curve-
fitting problems.” Philosophers sometimes disparage curve fitting as a
kind of naive inductive inference in which the hypotheses considered seek
merely to identify patterns that hold among observational quantities.
Model-selection criteria, including AIC, are not limited to such problems.
They also apply to causal models that say that an effect term is influenced
by the values of any number of input variables. In Chapters 3 and 4, we
will see how model-selection ideas apply to problems in evolutionary
biology.

Although 1 have argued that the dispute over AIC versus BIC is based
on a failure to realize that they are estimators of different quantities, the
fact remains that there are different model-selection criteria that all focus
on the goal of estimating predictive accuracy. For example, there is a
version of AIC derived by Sugiura (1978) that is better to use when some
of the models under evaluation have a large number of parameters relative
to the number of observations available; it is called AIC, and imposes a
larger penalty for complexity than AIC does.*® There is also a criterion
(TIC) derived by Takeuchi (1976). These criteria all compute the likelihood
of the best fitting member of a model and then impose a penalty for
complexity; they differ over what that penalty term is. I mentioned earlier

“ Burnham and Anderson (2002: 50) recommend using AIC, precisely when n/k < 40, where # is
the number of observations and 4 is the number of parameters in the largest model under
evaluarion.
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that AIC is equivalent to take-one-out cross-validation; this raises the
question of what the statistical properties are of cross-validation methods
that take more than one out, and of what use such methods are in
different inference problems (Forster 2006, 2007). And there is also the
question of what model-selection criteria are best when the goal is
extrapolation, not interpolation. What I find striking in this diversity of
problems and solutions is what they have in common. This is the Akaike
framework, within which all these approaches are to be understood. We
want to know how accurately a model will predict new data when it is
fitted to old. How well the model fits the old data is relevant to this
question, but so is the model’s complexity (the number of adjustable
parameters it contains). This framework helps explain why scientists
should bother to test models that they know are false. If the goal were to
decide which models are true, there would be little point in testing
idealizations. But predictive accuracy is a different story, and it has its
own epistemology. Bayesianism, likelihoodism, and the Neyman—Pearson
framework each have their different drawbacks when applied to this kind
of problem. The subject that Akaike initiated throws new light on these
issues, and there is the promise of more light to come.

Realism and instrumentalism

Virtually everyone who follows professional basketball believes that
players sometimes have “hot hands.” When players are hot, their chance
of scoring improves, and teammates try to feed the ball to them. Gilovich
et al. (1985) tested this widespread belief by doing a statistical analysis of
scoring patterns in the National Basketball Association. Their conclusion
was that one cannot reject the null hypothesis that each player has a con-
stant probability of scoring throughout the season; belief in hot hands,
they say, is a “cognitive illusion.”*> Basketball mavens reacted to this
statistical pronouncement with total incredulity. Placing this dispute in
the Akaike framework allows it to make more sense. Scientists should not
feel shy about admitting that the null hypothesis is false. The idea that

each player never wavers in his probability of scoring is preposterous. But

45 See Wardrop (1999) for a skeptical assessment of Gilovich et al.’s analysis. Wardrop argues that
Gilovich et al. tested hypotheses about correlation (whether a player’s probability of scoring on a
given shot if he scored on eatlier shots is greater than his probability of scoring if he missed
previously), but did not assess the issue of starionarizy (maybe a player’s probability of scoring
suddenly shifts from one value to another).
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even if this silly hypothesis is false, there still may be a point to seecing how
accurately it predicts new data. Perhaps the truth about basketball players
is very complex; their scoring probabilities change as subtle responses to a
large number of interacting causes. If so, players and coaches may make
better predictions by relying on simplified models. Even if hot hands are a
reality, trying to predict when players have hot hands may be a fool’s
errand.

The problem of evaluating how accurately models predict new data
when fitted to old has a philosophically interesting property: a model
known to be false will sometimes be more predictively accurate than a
model known to be true. What is perhaps more surprising is that we can
sometimes estimate which of them we should expect to be more pre-
dictively accurate and the methods available for assessing this sometimes
favor false models over true ones. The Akaike framework thus breathes
new life into an old philosophy. Instrumentalism is the view that the goal
of scientific inference is to find theories that make accurate predictions,
not to find theories that are true.*® It stands opposed to scientific realism,
which holds that the goal is to find true theories.

The debate between realism and instrumentalism can’t be resolved by
polling scientists as to what their goals are. Some scientists say that they
want to find out what is true while others say that their object is to find
theories that make accurate predictions; all may be sincerely reporting
their personal goals, but that is not what is at issue. The philosophical
debate concerns what scientific inference is able to attain, not what scientists
yearn for. If the inference procedures used in science are able to discover
which theories are true, or which are probably true, then realism is cor-
rect. If those procedures are capable only of discovering which theories
will make the most accurate predictions, then instrumentalism is. Both
philosophies need to be tempered by the fact that scientists rarely are able
to examine a set of hypotheses that exhaust the possibilities (Stanford
2005). Scientists deal with the theories that have been developed thus far,
and no one can foresee the novel theories that future innovators may put
on the table. This sobering fact about the limitations that scientists per-
petually face means that the best that scientists can do at any time is to
render comparative judgments. Realism should be understood as the

% Instrumentalism is sometimes also formulated as a semantic thesis — that scientific theories are
neither true nor false, but are merely instruments for making predictions. The proper response is
that there is no reason to think that theories lack truth values, and no reason to burden an
epistemological thesis with an outmoded philosophy of language (Sober 2002).
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claim that scientific modes of inference indicate which of a set of com-
peting hypotheses is the best candidate for being true; instrumentalists
think that science is in a position only to say which of the competitors can
be expected to make the most accurate predictions.

Inscrumentalism and realism are usually formulated as global theses.
They are claims about #// the hypotheses that scientists investigate. It
doesn’t matter whether the hypotheses in question are models or ficted
models, any more than it matters whether they are part of the subject
matter of one science or another. The Akaike framework shows that this
global formulation of the problem needs to be recast. The framework
makes room for an instrumentalist philosophy of models. The fact that
one model (M) has a better AIC score than another (M>) is grounds to
think that the first will be more predictively accurate; it is not grounds for
thinking that A/ is true, or more probably true, or better supported as a
candidate for being true. However, this difference in the scores of the two
models has another implication concerning the truth of the fitted models —
Akaike’s theorem can also be formulated as the thesis that the AIC score
of a model M is an unbiased estimate of the closeness to the truth of the
fitted model L(M), where closeness is measured by the Kullback—Leibler
distance.”” With respect to the pressure cooker in your kitchen, there is a
true but unknown curve that describes how temperature and pressure are
related. Specific curves have different Kullback—Leibler distances to that
true curve. Models are instruments for finding curves that are close to the
truth and models are compared with each other to determine how well
they advance that mom_.Am The Akaike framework therefore makes plaus-
ible a mixed philosophy: instrumentalism for models, realism for fitted
models (Sober 2002b). When a false model Fand a true model 7"are both
fitted to the data, L(F) will sometimes be closer to the truth than Z(7).
AIC and other model-selection criteria seek to provide guidance as to
when this is so.

47 Suppose ¢ is the true distribution (o7, p2, -, p,) of a discrete random variable and ¢ is a
candidate distribution (1, T2, ... , 7,). The KL distance from the candidate ¢ to the truth ¢ is
I(t,c) = 3 pilog (p:/m;). Notice thar the true discribution provides the weighting on the log of
the ratio. KL is a “directed distance;” the distance from ¢ to ¢ (where ¢ is true) doesn’t have to be
the same as the distance from £ to ¢ (where ¢ is true). See Burnham and Anderson (1998) for
further discussion.

48 The relation of AIC to Kullback—Leibler distances provides an easy answer to the question of why
one should care about AIC estimates if one has no interest in using ficted models to predict new
daca. One srill might care about finding fitted models that are close to the truth when Kullback--
Leibler distance is used to measure closeness.
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One challenge to this limited form of instrumentalism begins with the
idea that instrumentalism and realism should be thought of as claims
about the wltimate goals of science. Maybe finding models that make
accurate predictions is a mere tactic that science deploys in the larger
campaign. A realist can grant that it is useful to find idealized models that
make accurate predictions if such models are worth having because they
help one get to the truth, and truth is the ultimate goal. A defense of this
response requires more than the psychological fact that scientists often
would /ike to find true theories. What is needed is an account of how
scientific inference makes it possible to turn assessments of the predictive
accuracy of models into claims about which theories are true. I've already
mentioned that fitted models may be nearer or farther away from the
truth, and that there is an intimate connection between AM,’s being a
better predictor than M, and L(Mj)’s being closer to the truth than
L(M). Perhaps the objection can then be put by saying that the real goal
of science is to discover which fitted models are true and that models
themselves are mere means to that end. Again, this may or may not be
true as a psychological claim about what interests various scientists
(though, in fact, scientists are often more interested in models than in
fitted models). But how can it be justified as a claim about scientific
inference, not about the psychology of scientists? If finding models thatc
are accurate predictors and fitted models that are close to the truth go
hand in hand, then it is hard to see that one is logically prior to the other.
Given this, the mixed thesis of “instrumentalism for models, realism for
ficted models” may be more satisfactory than either global realism or
global instrumentalism.

What is a parameter?

AIC says that the complexity of a model is relevant to estimating its
predictive accuracy; BIC says that a model’s complexity is relevant to
estimating its average likelihood. Both measure complexity by counting
parameters. This raises an important question. A model is a proposition,
distinct from the sentence in some language in which it happens to be
expressed; the proposition that temperature is linearly related to pressure
is no more a part of English than it is part of Chinese. Yet, the number of
parameters in a model seems to be a syntactic feature of how the model
happens to be described; by changing the language used, you seemingly can
change the number of parameters the model contains. If so, how could
the number of parameters be relevant to ascertaining these epistemically
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relevant properties of the model itself — its predictive accuracy or its
average likelihood? ’

This question can be fleshed out by way of our running example, the
comparison of LIN and PAR. I've said that LIN has two parameters and
PAR has three (ignoring, for the moment, the error term that each
deploys). Any straight line of the form y = mx + & can be represented as a
point in a two-dimensional parameter space in which one axis is its slope
(m) and the other is its y-intercept (4). A straight line in the x-y plane is
just an ordered pair of numbers <m,6> in this parameter space. In the
nineteenth century, Georg Cantor discovered that the number of points
in a plane is the same as the number of points on a line. This means that
there is a one-to-one (injective) mapping from ordered pairs to single
numbers. An example of this kind of mapping is provided by interleaving.
Consider a plane whose possible m values run from 0 o 1 and whose
b values do the same. Each point in this unit square can be expressed as
an ordered pair, cach of whose members is a decimal expansion of
the form °

m = O.Bﬂawaw c _U = O.U;umvw -

By interleaving we can represent this pair of numbers as a single
number

i = O‘D,:T_BN_UNBwa -

Notice that there is a function from each <, 6> pair to a single number
7, and another function from each possible value of 7 back to that single
<m,b> pair. So, in what sense are there fwo parameters (m and &) in
LIN? Why not say, instead, that there is just one (namely 7)? And if LIN
has just one parameter, so does PAR (since you can interleave triplets just
as well as pairs). The difference in complexity of the two models seems to
be an artifact of the notation we arbitrarily choose.

This question was important in nineteenth-century mathematics where
the problem was to describe what dimension means. Is there a rigorous
and linguistically invariant way to express the thought that a plane has
two dimensions while a line has just one? The problem was solved in the
twentieth century by Brouwer, who isolated a concept of dimension that
is topologically invarianr (Courant and Robbins 1959: 249-51; Dauben
1994). The idea of interleaving can be used to convey the intuitive idea.
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Consider three straight lines (one of which is true); each is defined by its
coordinates in the <#,6> parameter space:

Truth = <1, 1> Ly =<2,1> L; = <1,3>.

Notice that L; is closer to Truth than L, is. If we interleave each of the
ordered pairs, we obtain:

I(Truth) = 11 (L) =21 I(L;) = 13.

Notice that I(L,) is closer to I(Truth) than I(Z,) is. Although the mapping
achieved via interleaving is injective, it is not distance preserving. The
mapping does not have the property that points that are close together in
the <m,b6> plane have images in the line that are always close together.
There is more to the idea of topological invariance than that of a mapping
that is distance-preserving, but the example of interleaving helps elucidate
what a parameter is in model-selection theory. If a space has # dimensions,
then there is no one-to-one, continuous, and distance-preserving mapping
from that space to another space that has m dimensions, if » # .
Dimensionality is in this sense an invariant quantity.

What does this imply about the dimensionality of LIN? Is it two, or
one, or some other number? By definition, it must be unique, the pos-
sibility of interleaving notwithstanding. To answer this question would
lead us too far afield. But I hope the following two comments are helpful.
First, consider the relationship of LIN to PAR. LIN is nested in PAR. This
is a fact about the two propositions and has nothing to do with the
language in which they happen to be expressed. It is a consequence of this
nesting relationship that LIV cannot have a higher dimensionality than
PAR. And since the fact about the nesting relationship is invariant, the
same holds for the fact about dimensionality (Forster 1999). The second
comment returns us to the content of Akaike’s theorem. As noted, the
theorem identifies an unbiased estimate of the predictive accuracy of a
model M, or, equivalently, an unbiased estimate of the Kullback—Leibler
distance from L(M) to the true but unknown probability distribution 7
Expressed in this second way, Akaike’s theorem states thar:

E[KL—Closeness of L(M) to T| = [Log-likelihood of ZL(M)] — k.

The left-hand side describes a language-independent quantity, and the
same is true of the first addend on the right. It follows that # must be
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language independent as well. Again, this does not tell you how to
determine what value of £ a model has. But it does assure you that,
whatever it is, it is not an artifact of notation.

Is AIC frequentist?

I have classified AIC as a type of frequentism; I now want to consider
briefly whether this classification makes sense. I have emphasized that AIC
isn’t a criterion for acceptance and rejection and that it does not violate
the principle of total evidence. What is more, the AIC score of a model
does not depend on the stopping rule used. These properties of AIC
separate it from significance tests and the Neyman—Pearson theory. If AIC
is frequentist, it is a different kind of frequentism.

Akaike (1973) refers to his result as “an extension of the maximum
likelihood principle,” but this phrase should not lead us to conclude
that AIC is a form of likelihoodism. AIC does not say that the best
model is the one that has the highest average likelihood, nor does it say
that model M, is better than model M, precisely when L(M,) has a
higher likelihood than L(AZ). It is even clearer that AIC is not Bayesian.
In using AIC, you are not estimating the probability that a model is
true, nor are you estimating the probability that one model will be more
predictively accurate than another. To reach conclusions about such
posterior probabilities, you would need prior probabilities, and these
play no role in AIC.

The main reason that AIC is viewed as a frequentist construct is the
character of Akaike’s theorem, which establishes that this estimation
procedure has the long-run operating characteristic of being unbiased.
This is just the sort of property that frequentists care about. Of course,
they recognize that other operating characteristics are relevant as well. Is a
procedure statistically consistent? What is its variance? Is it admissible?
As noted in §1.5, Bayesians and likelihoodists do not object to the
evaluation of procedures; they find nothing amiss in comparing the
Madison tuberculosis test with the one manufactured in Prairie du Chien.
However, they insist that there is a further question that needs to be
asked: How should one evaluate a given estimate (never mind what
method of estimation was used to construct it)? Likelihoodists want to
know how well supported the estimate is, where support is understood in
terms of the law of likelihood. Bayesians want to know how probable it is
that the estimate is true (or close to the truth). Frequentists deny that this
second question makes any sense; they hold that estimarors have long-run
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operating characteristics, but there is nothing further to be said about the
individual estimates that those estimators generate.

The fact that Akaike’s theorem addresses a kind of question that fre-
quentists think is important does not show that A/C scores are meaningless
from a Bayesian or likelihoodist point of view. Of course it is possible for
M, o have a better AIC score than M) even though A, has the lower
average likelihood and even though L(Af)) is less likely than L(A,). But the
law of likelihood and AIC still could join hands in friendship if AIC scores
provided evidence concerning the predictive accuracies of different models,
where evidence is understood in terms of the law of likelihood. Think of
AIC as a measurement device, like a thermometer; perhaps AIC scores are
to predictive accuracy as thermometer readings are to temperature. If a
thermometer assigns a higher number to one object than it does to another,
we take that to be evidence that the first object has a higher temperature than
the second. Perhaps the same is true of AIC scores. The relevant property of
thermometers can be described as follows. Suppose the thermometer read-
ings on objects O; and Oz, R(O;) and R(O)), are such that R(O;) — R(O,) =
x > 0. This observation indicates that the best point estimate of the tem-
perature difference is positive when

There exists a >0 such that for all z2<0,

Pr[R(O;) — R(O;) = x| Temp(O;) — Temp(O;) = ]
> Pr[R(O;) — R(O2) = x| Temp(O;) — Temp(O,)= z].

What would it take for the same thesis to hold for AIC scores and their
relationship to the predictive accuracies of different models? What would
be true is that, when we observe that model A, has an AIC score that is x
units larger than the AIC score of model M, that the best point estimate
of the difference in predictive accuracies is positive. That is,

There exists a y>0 such that for all 2<0,

PrAIC(M;) — AIC(M3) = x| PA(M;) — PA(M,) =y
>PrAIC(M;) — AIC(M,) = x|PA(M,) — PA(M,) = z].

This inequality does not follow from Akaike’s theorem. And it may not
hold for 4/l values of x — e.g., when x is very close to zero (Forster and
Sober, in preparation) — but when it does hold, Bayesians and like-
lihoodists should have no qualms about viewing AIC scores as evidence.
AIC began life with a frequentist pedigree, with Akaike’s theorem. But
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AIC scores may be essentially tied to frequentism no more than thermo-
meter readings are.

1.8 A SECOND TEST CASE: REASONING ABOUT COINCIDENCES

When Evelyn Marie Adams twice won the New Jersey lottery, the New
York Times said that the odds of this happening by chance are 1 in 17
trillion; this is the probability that Adams would win both lotteries if she
had purchased a single ticket for each and the drawings had been at
random. In fact, the newspaper made a small mistake. If the goal is to
calculate the probability of Adams’ winning those two lotteries, the
reporter should have taken into account the fact that Adams purchased
multiple tickets; the newspaper’s very low figure should therefore have
been somewhat higher. However, the typical response of statistical
sophisticates is that this modest correction misses the point. For sophis-
ticates, the relevant event to consider is not that Adams won those two
lotteries, but the fact that someone won two state lotteries at some time or
other. Given the many millions of people who have purchased lottery tickets,
this is “practically a sure thing” (Diaconis and Mosteller 1989: 859).

Was Adams’ double win a mere coincidence? Or were these two lot-
teries rigged in her favor? Diaconis and Mosteller say that the relevant
principle to use when reasoning about coincidences is the law of truly large
numbers. This says that, “with a large enough sample, any outrageous
thing is likely to happen.” They cite Littlewood (1953) as having the same
thought; with tongue in cheek, Litdewood defined a miracle as an event
whose probability is less than 1 in 1 million. Using as an example the US
population of 250 million people, Diaconis and Mosteller observe that if
a miracle “happens to one person in a million each day, then we expect
250 occurrences a day and close to 100,000 such occurrences a year”
(1989: 859). If the human population of the earth is used as the reference
class, miracles can be expected to be even more plentiful.

How should the law of truly large numbers be applied to Adams’
double win? One possibility is to change our description of the obser-
vations from

(1) Evelyn Marie Adams, having bought four tickets in each of two New
Jersey lotteries, wins both.

to the logically weaker statement that

(2) Someone at sometime, having bought some number of tickets in two
or more lotteries in one or more states, wins at least two lotteries in a
single state.

Evidence 105

If you are using probabilistic modus tollens (§1.4) to think about this
problem, and if you believe that Adams’ double win does not warrant
rejecting the hypothesis that the lotteries were fair, then weakening the data
description from (1) to (2) may be appealing. It provides a simple strategy
for neutralizing the appeal of conspiracy theories. But even if this strategy
leads to the conclusion about Adams’ good fortune that you find intuitive,
it raises the question of when and how much a description of the data
should be weakened. Without some guidance on this issue, you run the risk
of weakening the data whenever they go against your pet theories. This
allows you to be complacent about what you already believe and skeptical
about the hobbyhorses that others have chosen to ride — a satisfying state of
mind perhaps, but one that cannot stand up to rational scrutiny.

A second approach, which abides by the principle of total evidence (§1.4),
is Bayesian. It concedes that the hypothesis that the lotteries were fair has a
much lower likelihood than the hypothesis that the two lotteries that Adams
won were rigged in her favor, but then invokes prior probabilities to show
that Adams’ double win does not make it probable that the two lotteries were
rigged. My objection to invoking priors here is not that they are subjective.
After all, we may have evidence that lotteries are usually fair, though
developing this point would require us to consider the fact that people who
rig [otteries have a powerful incentive to insure that their chicanery remains
secret. Rather, my reservation about this Bayesian reply is that it concedes
that the observations favor the hypothesis that the two lotteries were rigged in
Adams’ favor. The law of likelihood, which is central to Bayesianism, obliges
Bayesians to make this concession. I suggest that it is possible to show that
the observations do not have this evidential significance. The model-selection
framework allows this kind of argument to be developed, although it must be
recognized that the goal has been changed; we no longer are trying to figure
out which hypothesis is probably true or which has the highest likelihood;
rather, we are aiming to discover which will be most predictively accurate.

The model-selection approach agrees with Bayesianism that data cannot
be discarded. Rather, the right approach is to add observations. Instead of
weakening the observations by discarding (1) and focusing on Q..v. we should
include additional observations about the people who won and lost other
lotteries and how many tickets they purchased. Once the data set is aug-
Bnm:ﬁm&v we can consider multiple models. One of them says that each lottery
is fair:

(Fair) For each tcket 7 purchased in New Jersey lottery 7,
Pr(ticket i wins | ticket 7 was purchased in lottery 7) = L

(where #; is the number of tickets purchased in lottery ). ’
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This model has one parameter for each lottery. It is far simpler than the
following model:

(Rigged) For any ticket i purchased in New Jersey lottery j by
person k, Pr(ticket i wins | ticket i was purchased in lottery ;
by person k) = pj.

The (Rigged) model has a separate parameter for each person buying a ticket
in each lottery. If the data on lottery winners and losers favors (Fair) over
(Rigged), they do so not by showing that (Fair) is more probable than
(Rigged), nor by showing that (Fair) has the higher likelihood, but by showing
that (Fair) can be expected to be more predictively accurate than (Rigged).

(Fair) is a model that unifies the data far more than (Rigged) does.
(Fair) says that all the tickets sold in a given lottery are subject to the same
probabilistic process, whereas (Rigged) says that each person buying
tickets in a given lottery is a law unto herself. Because AIC and other
model-selection criteria value paucity of parameters, they offer an
explanation of why a model that applies # parameters to an entire data set
often has a leg up on a disunified model that subdivides the data into
parts, supplying a different set of £ parameters to each.

It is important to realize that whether a more unified model has a better
AIC score than a less unified model depends on the data. There is no
categorical imperative that says that unified models are always better. For
example, it is not inevitable that Fair is superior to the following even
simpler model:

(One) For each ticket 7 purchased in any New Jersey lottery, Pr(ticket 7
wins | ticket 7 was purchased in any New Jersey lottery) = p.

The (One) model lumps together all New Jersey lotteries; tickets purchased
in different lotteries are said to have the same chance of winning. This
model is even more unified than (Fair), but that does not guarancee that its
estimated predictive accuracy will be greater.

Although the models just considered exhibit a virtue of the model-
selection framework, there is 2 model not yet mentioned that exhibits one
of its limitations. The conspiracy model (Rigged) gets lower marks than
the (Fair) model, but what about the following (Mixed) model?

(Mixed) For each ticket # purchased by Evelyn Marie Adams, Pr(ticket £
wins | ticket # was purchased by Evelyn Marie Adams) = p. For
each other ticket 7 purchased in New Jersey lottery 7, Pr(ticket
wins | ticket 7 was purchased in lottery j) = L (where #; is the
number of tickets purchased by people other than Adams in lottery 7).
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Suppose, to make things simple, that Evelyn Marie Adams bought
tickets only on the two lotteries that she ended up winning and bought
a few tickets on each. This means that L(Mixed) fits the data far becter
than L(Fair). And (Mixed) has just one more parameter than (Fair). This
means that (Mixed) may have a better AIC score than (Fair). If so what’s
wrong with this mixed model? The Bayesian has an answer: It has a
lower prior probability. It is not obvious what the model selectionist can
say here.

This question aside, there is a point here on which defenders of dif-
ferent statistical frameworks can agree. The human mind often imposes
patterns where none exist. Repeatedly tossing a fair coin will inevitably
produce runs of heads; it is tempting to think that the coin has suddenly
become biased (“hot”). Part of what facilitates this kind of over-
interpretation is that we tend to focus on observations that are vivid. We
narrow the data set. We focus on the run of heads, and not on all the
tosses. It is Adams’ double win that excites our curiosity, not a boring
compilation of all the winners and losers in all New Jersey lotteries. In all
these cases, we need to embed what we find vivid in a more inclusive data
set; we then need to formulate models that apply not just to whar is vivid
but to what is quotidian as well.

1.9 CONCLUDING COMMENTS

The claim that science aims to discover which theories are probably true
may sound like a truism, but there are two reasons to pause over this
formula. The first is that one must be wary of an equivocation. In
ordinary English, to say that a theory is “probably true” just means that it
is plausible or reasonable, given the evidence at hand; praising a theory in
this way leaves open what relevance the mathematical theory of prob-
abilicy might have to such judgments. Bayesianism is a substantive epis-
temology, not a truism. The second reason for pausing is that scientists
often work with idealized models that are known to be false. How can a
model known to be false probably be true? There needs to be a place in
our epistemology for comparisons of such theories.

Royall’s three questions (§1.1) are different; questions about evidence
must be separated from questions about acceptance and from questions
about action. This threefold distinction will be important in what follows
when we consider evidential questions such as the following:

e Are the imperfect adaprations that organisms exhibit evidence that they
were not produced by an intelligent designer?
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o Is the fact that bears in cold climates have longer fur than bears in
warm climates evidence that fur length evolved by natural selection as
an adaptive response to ambient temperature?

o Are the similarities that species exhibit evidence that they stem from a
common ancestor?

Perhaps you find it obvious that the answer in all three cases is yes. If so,
what’s the point of taking on the job of figuring out why? The answer is
that the book you are reading is a work of philosophy, not biology, and so
the exploration of what seems obvious is of central importance. Even
when a proposition strikes us as obvious, it is often not so obvious why
the proposition is ¢rue. This is the occasion for philosophical exploration.
One possible result is that what seems obvious turns out 7oz to be true
unrestrictedly, but is true only in a restricted set of circumstances.
Another is a deeper grasp of the assumptions we tacitly make that underlie
our convictions.

The law of likelihood is common ground for Bayesians and like-
lihoodists. It will provide the starting point for several of the questions
about evidence and evolution that I will examine. Putting the law to work
in the next chapter will require us to consider a new complication. The
hypotheses we wish to test often do not have likelihoods when considered
all by themselves; they need to be supplemented by additional infor-
mation if they are to confer probabilities on the observations. An
important question will be how this “additional information” should be
obtained. There also will be a place in what follows for ideas about
evidence that derive from a model-selection framework. Just as the
readings of an unbiased scale can provide evidence as to which of two
people is heavier, so AIC scores can provide evidence as to which of two
models is apt to be more predictively accurate. The law of likelihood is
central to understanding what evidence is, but it is not the only idea we
will use. The law applies to simple statistical hypotheses and produces a
verdict about whether the observations favor the hypothesis that F; is true
over the hypothesis that A is true; AIC and other model-selection criteria
apply to composite statistical models and help us discern which models
will be more predictively accurate. The law of likelihood and AIC are not
in conflict, given their different goals and their different realms of

applicability.

CHAPTER 2

Intelligent design

2.1 DARWIN AND INTELLIGENT DESIGN

The first edition of Darwin’s On the Origin of Species by Means of Natural
Selection, or the Preservation of Favoured Races in the Struggle for Life
(1859) begins with quotations from two philosophers:

But with regard to the material world, we can at least go so far as this — we can
perceive that events are brought about not by insulated interpositions of Divine
power, exerted in each particular case, but by the establishment of general
laws. (W. Whewell, Bridgewater Treatise)

To conclude, therefore, let no man out of a weak conceit of sobriety, or an
ill-spirited moderation, think or maintain, that a man can search too far or be too
well studied in the book of God’s word, or in the book of God’s works; divinity
or philosophy; but rather let men endeavour an endless progress or proficience in
both. (F. Bacon, Advancement of Learning)

William Whewell was Darwin’s contemporary and rejected his theory of
evolution, a tesult that Darwin probably anticipated when he wrote The
Origin of Species." Francis Bacon wrote more than 200 years earlier. The
two quotations are interesting because of what they reveal about Darwin’s
views on the relationship of belief in God and belief in evolution.
Bacon’s remark harks back to an old distinction between the Bible
(God’s word) and nature (God’s work). Sacred texts and natural phe-
nomena provide separate pathways for learning about God. This two-
pathway picture was important in the formation of the Royal Society in

' The Bridgewater Treatises were a series of books that developed the argument for the existence of
God that we will consider in detail in this chapter — the argument from design. In the 1833 book
from which Darwin drew this quotation, Whewell embraced the view thar the origin of species and
the origin of languages are beyond the reach of present-day science and are likely to remain so; he
argued that both require divine intervention. Darwin’s quoting from Whewell does not mean that
he expected Whewell to like how he used this passage. See Ruse (1979), Hodge (1991), Brooke
(2003), and Snyder (2006) for different views of Darwin’s relation to Whewell.
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