CHAPTER TWO

Alternative Views of the
Scientific Method and
of Modeling

Science is a process for learning about nature in which
competing ideas about how the world works are measured
against observations (Feynman 1965, 1985). Because our de-
scriptions of the world are almost always incomplete and
our measurements involve uncertmntyland inaccuracy, we

require methods for assessing the concordance of the com- .
peting ideas and the observations. These methods generally .

constitute the field of statistics (Stigler 1986). Our purpose
in writing this book is to provide ecologists with additional
tools to make this process more efficient. Most of the mate-
rial provided in subsequent chapters deals with formal tools
for evaluating the confrontation between ideas and data,
but before we delve into the methods we step back and con-
sider the scientific process itself. No scientist can be truly
“neutral.” We all operate within a fundamental philosophi-
cal worldview, and the types of statistical tools we employ
and the types of experiments we do depend on that philoso-
phy. Here we present four such philosophies.

There is a commonly accepted model for the scientific
process (and from it arose a well-developed body of statistics
that is taught in nearly every university in North America).
The basic view can be thought of as a learning tree of criti-

‘cal experiments, which was described by Platt (1964) as

“strong inference,” and consists of the following steps:

1. Devising alternative hypotheses
2. Devising a crucial experiment (or several of them) with
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alternative possible outcomes, each of which will, as
nearly -as possible, exclude one or more of the
hypotheses
3. Carrying out the experiment so as to get a clean result
4. Recycling the procedure, making subhypotheses or se-
quential hypotheses to refine the possibilities that re-
main, and so on (Platt 1964, 347)

Platt likens this to climbing a tree, where each fork of the
tree corresponds to an experimental outcome, and we base
the direction of the climb on the outcomes so far. It is espe-
cially interesting for us as ecologists that Platt associates a
“second great intellectual revolution” with the “method of
multiple hypotheses,” and attributes some of the most origi-
nal thinking in this area to the geologist T. C. Chamberlain
who published at the end of the last century. In particular,
Chamberlain stressed that we are guaranteed to get into
trouble when we consider only a single hypothesis rather
than multiple hypotheses. This is ‘especially interesting be-
cause the similarities between the geological and ecological
sciences are in some ways much greater than the similarities
between the other physical and the ecological sciences. In
both ecology and geology, experiments may be difficult to
perform and so we must rely on observation, inference,
good thinking, and models to guide our understanding of
the world. In fact, ecology may be much more of an “earth
science” than a “biological science” (Roughgarden et al.
1994). We include a reprint of Chamberlain’s classic pa-
per—first published in the 1890s—as the Appendix.

ALTERNATIVE VIEWS OF THE SCIENTIFIC METHOD

Platt’s view is to a very great extent the logical extension
of the work of Karl Popper (1979), who revolutionized the.
philosophy of science in the twentieth century by arguing
that hypotheses cannot be proved, but only disproved
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TaBLE 2.1. Four philosophies of science.

Philosopher Key word or phrase Type of confrontation
Popper Falsification of hy- Single hypothesis is
potheses disproved by confron-
_ tation with the data.
Kuhn Paradigms, normal sci- Singlé hypothesis used
ence, scientific revolu- until there is so much
tion contradictory informa-

tion that it is “over-
thrown” by a “better”
hypothesis._

Polanyi Republic of science Multiple views of the
world allowed accord-
ing to the different
opinions of scientists. '
Confrontation be- -

tween these views and

the data judged on
(i) plausibility,
(ii) value, (iii) inter-

_ est.
Lakatos ) Scientific research Confrontation of mul-
program tiple hypotheses with

data as arbitrator.

»(Table 2.1). The essence of Popper’s method is to challenge
a hypothesis repeatedly with critical experiments. If the hy-
pothesis stands up to repeated experiments, it is not vali-
dated, but rather acquires a degree of respect, so that in
practice it is treated as if it were true. Most “modern” scien-
tific journals adopt this approach, even though there are
difficulties in using it even under the best circumstances
(e.g., Lindh 1993).

Coinciding with Popper’s philosophical development was
the statistical work of Ronald Fisher, Karl Pearson, Jerzy Ney-
man, and others, who developed much of the modern statis-
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tical theory associated with “hypothesis testing” (e.g., Ken-
dall and Stuart 1979, 175 ff.). In hypothesis testing, we focus
on a single hypothesis (called the “null hypothesis”) and
calculate the probability that the data would have been ob-
served if the null hypothesis were true. If this probability is
small enough (usually 0.01 or 0.05), then we “reject” the
null hypothesis. To complete the calculation, we must also
compute the statisticaljpower associated with the test (Peter-
man 1990a,b; Greeangod 1993; Thompson and Neill 1993).
The power is the prohability that if the null hypothesis were
actually false and we*were given the same data, we would
reject it.

For example, we might begin with the idea that larger
flocks of birds forage more effectively than smaller flocks.
The null hypothesis could be that there is no relationship
between flock size and foraging efficiency. A typical applica-
tion of hypothesis testing would be to use linear regression
to test the null hypothesis by calculating the probability that
the slope of a graph of flock size versus feeding efficiency is
non-zero. If the probability that the data could have arisen
from the null hypothesis (slope = 0) is greater than 0.05
(or 0.01), the null hypothesis is not rejected at the “5%
level” (or the 1% level). In the case considered here, if the
null hypothesis could not be rejected at the 5% or 1% level
and the power were sufficiently high, then the real ecological
hypothesis—larger flocks forage more efficiently—would ef-
fectively be rejected. '

After testing the hypothesis that larger flocks forage more
efficiently, we would continue to climb Platt’s decision tree
to another set of experiments, depending on whether the
effect of flock size on foraging efficiency was or was not sta-
tistically significant. The key elements of this view of science
are (1) the confrontation between a single hypothesis and
the data, (2) the central idea of the critical experiment, and
(3) falsification as the only “truth.” Popper supplied the phi-
losophy and Fisher, Pearson, and colleagues supplied the
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statistics. At best, this view of science is exceptionally narrow
and actually does not fit many ecological situations. At
worst, it can be downright dangerous, if, for instance, we
accept the null hypothesis as true and the experiment had
low power (also see Bernays and Wege 1987). Before we ex-
plain our own perspective, we want to provide an overview
of some other views of science.

Thomas Kuhn (1962) introduced the ideas of “normal sci-
ence,” “scientific paradigms,” and “scientific revolutions.”
According to Kuhn, scientists normally operate within spe-
cific paradigms, which are broad descriptions of the way na-
ture works. Normal science involves collection of data within
the context of the existing paradigm. Normal science does
not confront the existing paradigm, rather, it embellishes it.
The paradigm dictates what type of experiments to perform,

what data to collect, and how to interpret the data. In .
Kuhn'’s view, real change occurs only when (i) a large body

of contradictory data accumulates and the existing para-
digm cannot explain the data, and (ii) there is an alterna-
tive paradigm that can explain the discrepancies between
the old paradigm and the observations. Kuhn argues that
there is rarely, if ever, a critical experiment at the level of
the paradigm. Instead, a particular anomaly will be ex-
plained as a measurement problem. It is the collection of
contradictory experiments that leads to the revolution.

The Kuhnian perspective is that the type of experimental
trees and critical experiments described by Platt may occur,
but only within an individual paradigm, and that they are
the standard procedures of normal science. The example
we gave earlier of examining the relationship between flock
size and foraging efficiency would be considered normal sci-
ence within a broad paradigm of natural selection acting on
behavior.

Michael Polanyi (1969) describes a “republic of science”
consisting of a community of independent thinkers ‘cooper-
ating in a relatively free spirit. To Polanyi, this represents a
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simplified version of a free society in which scientists de-
velop by “training” with a “master” so that the practice of
science is analogous to apprenticing with a master artisan
and learning the skills of the artisan by close observation
and participation. Scientists are chosen through this ap-
prenticing system; the individuals constitute the “republic”
of citizens taught through the master-apprentice chain. It is
this system that prevents science from becoming moribund
or rigid, since the apprentice both learns high standards
from the master and fvelops his or her own judgment for
scientific matters. Thére are three main criteria for judg-
ment (Polanyi 1969, 53 ff.): (1) plausibility, (2) scientific
value (consisting of accuracy, intrinsic interest, and impor-
tance), and (8) originality. The criteria of plausibility and
scientific value will €ncourage conformity, whereas the value
given to originality encourages creative thinking and dis-
sent. This forms the essential tension in any scientific field,
and the three criteria considered by Polanyi are appropriate
ones that we can use for confronting models with data. Pol-
anyi implicitly argues that the intellectual confrontation is
not between a model and data, but between models (i.e.,
different descriptions of how the world works) and data (ob-
servations and measurements).

There is an overlap between the ideas of Polanyi and
Kuhn. The apprentice system is the essence of Kuhn’s nor-
mal science: apprentices learn from their masters what type
of experiments to perform, and then, to a large extent, con-
tinue to work on this type of problem for the rest of their
careers. It is the unusual scientist who breaks away from the
material of the apprenticeship and enters a new field. We
have noticed how common it is in ecology for someone to
do a Ph.D. in a specific area, often with a particular tax-
onomic group, and then continue for most of a career to
study the same topic. One of our colleagues in a chemistry
department said that it was the same in his field: more than
70% of his colleagues worked with the same types of reac-
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tions ‘they studied for their Ph.D.’s. This is the apprentice
system and normal science. It is unlikely to lead to innova-
tion or breakthroughs.

Imre Lakatos (1978) describes “scientific research pro-
grams” (SRPs) that consist of a set of methodological rules
that guide research by indicating paths to avoid and paths
to pursue. The “hard core” is the key element of the SRP,
which generates a set of surrounding hypotheses that make
specific predictions. Lakatos refers to these surrounding hy-
potheses as a “belt” that protects the hard core. The individ-
ual elements of the belt can be tested, and rejected, but one
can rarely, if ever, directly challenge the hard core.

Lakatos points out that many hypotheses (e.g., Newton’s -
laws and the theory of gravity) have been highly regarded

and used despite their acknowledged inconsistency with

some aspect of the data. Organic chemists worked for years '

with models that they knew were wrong but for which alter-
natives were lacking. Lakatos argues that the value of an
SRP is its ability to make new predictions and provide a sim-
ple and elegant explanation of what is known. An SRP can
only be replaced by another SRP: One cannot reject a hy-
pothesis unless there is something better on hand to replace

it. Mitchell and Valone (1990) argued that optimization in

biology should be viewed as an SRP (also see Orzack and
Sober 1994).

Thus, in the Lakatosian view, the contest must always be
between competing hypotheses and the data. An individual
hypothesis may well be inconsistent with the data, but unless
there is another hypothesis that is more consistent with the
data, you will not discard the first hypothesis because you
have to keep working. The recognition of the importance of
more than one model is slowly appearing. For example,
Chen et al. (1992) compare a number of functions used to
describe the growth of fish. If we only consider one growth
function, we shall surely use it to make predictions, regard-
less of its efficacy, but comparing different growth functions
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allows choice in the description of how nature works. Similarly,
Schnute and Groot (1992) confront ten different models of
animal orientation with data, Ribbens et al. (1994) compare
different models for seedling recruitment in forests, and
Kramer (1994) compares six different models for the onset
of growth in the European beech.

To a great extent, Popper’s view of falsification, Kuhn'’s
normal science, Polanyi’g republic, and Lakatos’s testing of
the “belt” of auxiliary hypotheses are different descriptions
of the same scientific ac‘gity. It is rare that the major ideas,
such as evolution by natliral selection or the theory of rela-
tivity, are truly tested. In fact, most of the work of the éco-
logical detective will be at a considerably more mundane
level. Indeed, it is safe to say that we are writing this book as
a handbook for the practice of normal science. (Although,
of course, we hope that something more exciting comes
from it.) X :

As briefly described in the previous chapter, the field of
likelihood/Bayesian statistics is well suited for the analysis of
the contest between competing hypotheses and data. The
essence of likelihood/Bayesian analysis is the calculation of
the chance of the data given a particular hypothesis, and
(for Bayesian methods) from that, “posterior distributions”
that describe the probability assigned to each possible hy-
pothesis after data are collected. We describe the mechanics
of Bayesian statistics in succeeding chapters. Here we briefly
contrast the approaches of classical and likelihood/ Bayesian
statistics. We shall show in succeeding chapters that likeli-
hood methods are a special case of Bayesian ones, so that
from now on we simply refer to them as Bayesian methods.

In classical statistics, we test each hypothesis against the
data in a mock confrontation with a “null hypothesis.” In
Bayesian statistics, we test the hypotheses together against
each other, using the data to evaluate the degree of belief
that should be accorded each of the hypotheses. The result
of a classical analysis is rejection or nonrejection of the lone
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hypothesis, whereas the result of a Bayesian analysis is “de-
grees of belief” associated with the different hypotheses.

Two of the three pillars of the classical viewpoint, falsifica-
tion and the confrontation between a single hypothesis and
data, are directly opposed by the Bayesian viewpoint. In the
classical approach hypotheses are falsified (but never proved),
but in the Bayesian viewpoint degrees of belief are increasing
or decreasing. “Falsification” exists only as low degrees of belief
and “proof” is strong belief. The two views also are diame-
trically opposed on whether the confrontation is between a
hypothesis and the data, or between competing hypotheses
and data. According to Lakatos, we cannot reject a hypoth-
esis unless something better awaits, and Bayesian computa-
tion requires more than one hypothesis. In the viewpoint of
Popper and classical statistics, we can reject a hypothesis by
itself in single combat with data. But then what?

There is much more compatibility between the differing

viewpoints on the question of critical experiments. To a
Bayesian, a critical experiment is one that will greatly
change the degrees of belief in competing hypotheses. In-
deed, there is no point in conducting an experiment that
will not change the degrees of belief. To a Bayesian, the
ideal Popperian critical experiment is one that will change
the degrees of belief to almost 1.0 for one hypothesis and
almost 0.0 for the others, depending upon the outcome of
the experiment. The best experiments are those that dis-
criminate most clearly, although the Popperian/classical
view would not require that there be competing hypotheses.
We find the Lakatosian/Bayesian view more compelling:
that the contest is between competing hypotheses and data,
not between a single hypothesis and the data.

We must also consider the issue of statistical significance
versus biological significance. Too many people operate on
the premise that if statistical significance cannot be shown,
the work cannot be published. Yet even elementary statistics
courses teach us that statistical significance often has little,
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if any, relation to biological significance. Two curves can be
statistically significantly different even if they differ by less
than one percent, given a large enough sample size or small
enough measurement error. Conversely, given small sample
sizes or high variability, even the most different of biological
relationships can fail to be statistically significant. And yet,
especially when expen,ments are difficult or management
actions needed, we may’not have the luxury of obtaining sta-
tistical significance bef?e needing to act on our hypotheses.

STATISTICAL INFERENCE IN EXPERIMENTAL TREES

Now let us return to Platt’s experimental tree and con-
sider it from' the different perspectives. The basic structure
of an experimental tree is compatible with the varying view-
points if they are suitably modified. Lakatos would insist that
each experiment be a contest between competing hypoth-
eses, whereas Popper would accept experiments testing a hy-
pothesis with no competitor. More importantly, Lakatos
would not accept that the “hard core” of an SRP could be
experimentally tested in this way. Popper would see the ex-
periments as testing the key hypothesis, since a good hy-
pothesis is one that is amenable to direct experimental
falsification.

Platt’s experimental tree is based on the premises of (i)
very clear and distinct hypotheses and (ii) nonambiguous
outcomes. Examining the nature of the statistical tests that
could be used in working through an experimental tree
shows the problems of the method of hypothesis testing.
Imagine you are at experiment A and are asking if larger
flocks forage more efficiently. Suppose that if the null hy-
pothesis cannot be rejected, experiment B is appropriate,
whereas if the null hypothesis is rejected (therefore large
flocks do forage more efficiently), experiment C will be
next. What significance level should one choose to decide
which branch of the tree to follow? Should experiment C be
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next, even if the estimated increase in foraging efficiency
for larger flocks is biologically trivial, although statistically
significant? '

In our view, an experimenter would more profitably oper-
ate as follows. At the conclusion of experiment A there are
really seven options, not two:

go on to experiment B,
go on to experiment C,
repeat experiment A,
perform both B and C,
perform both A and C,
perform both A and B, or
perform A, B, and C!

MU Uk 9 M -

Indeed, if the experiments are inexpensive to set up and
run but require considerable waiting time for the outcome,
it would be best to do A, B, and C simultaneously.

Progress through an experimental tree thus depends on
several factors including (1) the cost of each experiment,
(2) the time required to do each experiment, and (3) the
relative degree of belief in competing hypotheses. At any
stage in the tree, a good scientist will compare the cost and
time required to do each experiment to the degree of belief
in competing hypotheses and from these calculate the opti-
mal next experiment(s).

UNIQUE ASPECTS OF ECOLOGICAL DATA

Platt envisioned very clean experiments in which one hy-
pothesis would be clearly discredited. Indeed, a key thrust of
Platt’s argument is that the fields that made the most rapid
progress were those fields that routinely thought about and
designed such experiments. Clearly, a field will make more
rapid progress if such clear, critical experiments can be de-
signed and conducted, and ecologists should seek to work
on systems that are amenable to such analysis. Whenever
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possible, conduct an experiment (Hairston, 1989, 1994; Un-
derwood, 1991). However, many ecological studies are moti-
vated by problems where such clear experimentation and
“hard data” are often not possible (Fagerstrom 1987) or
lead to other difficulties, as the recent “Frontiers in Biology”
in Science (269:313-61, 1995) and associated correspond-
ence (269:561-64, 1201-3) demonstrate.

For example, consiéer the problems in understanding the
dynamics of populatidns of blue whales. There is no possi-
bility for experimen ' manipulation (for decades at least),
there is no possibility*for replication, since there are so few
individuals and they may constitute a single population, and
the time scale of their dynamics is very slow. We cannot de-
sign a Platt-type experimental tree for manipulation of blue
whales—but we could design such an experimental tree for
many hypotheses and use observation, rather than experi-
ment, to differentiate between the hypotheses.

Blue whales are an extreme example, but the following
sattributes of ecological systems often make experimentation
difficult:

* Long time scales: Many ecological systems have time
scales of years or decades

* Poor replication: Many ecological systems are difficult
to replicate, and replicates are rarely, if ever, perfect

¢ Inability to control: One can rarely, if ever, control all
aspects of an ecological experiment

Because of these factors it is often harder to get clear,
unambiguous results in ecological experiments (cf. Shrader-
Frechette and McCoy 1992). Platt ‘described an experimen-
tal approach that did not really need statistics, because each
experiment produced a clear result. This is not often the
case in ecological work.

Of course, new students should seek systems that do not
have these problems, and we encourage you (especially grad-
uate students) to find systems that operate on short time
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scales and can be easily replicated and easily controlled. It

sometimes happens that we are able to apply knowledge from

small-scale experimental systems to largerscale “real world”

systems, but it is likely that at least some of the work of the

ecological detective will be on ecological systems that may

present all three of these difficulties. ‘ '
A\

DISTINGUISHING BETWEEN MODELS AND HYPOTHESES

We begin by trying to sort out “theory,” “hypothesis,” and
“model.” The etymology of theory is Greek, theoria, meaning
“a looking at, contemplation, speculation,” and we under-
stand theory to mean “a systematic statement of principles
involved” or “a formulation of apparent relationships or un-

derlying principles of certain observed phenomena which

has been verified to some degree.” The theory of evolution
by natural selection, without doubt the most important the-
ory in modern biology, is still mainly nonmathematical. The
same is true of the theory of Crick and Watson that DNA is a
double helix (Crick 1988). The etymology of hypothesis is
also Greek, hypotithenai, meaning “to place under.”

A hypothesis is “an unproved theory, proposition, supposi-
tion, -etc., tentatively accepted to explain certain facts or to
provide a basis for further investigation.” Webster’s dictionary
(Neufeldt and Guralnik 1991) separates theory and hypoth-
esis as follows: “theory, as compared here, implies consider-
able evidence in support of a formulated general principle,
explaining the operation of certain phenomena; hypothesis
implies an inadequacy of support of an explanation that
is tentatively inferred, often as a basis for further
experimentation.”

The etymology of model is from Latin modus, meaning
the way in which things are done. A model is an archetype,
“a stylized representation or a generalized description used
in analyzing -or explaining something.” Thus, models are
tools for the evaluation of hypotheses (our best understand-
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ing of how the world works), but they are not hypotheses
(cf. Caswell 1988; Hall 1988; Onstad 1988; Ulanowicz 1988).
Most hypotheses could be represented by a number of
models. The hypothesis that birds forage more efficiently in
flocks than individually could be represented by several
models relating consumption rate C and flock size §:

C = aS Model A§ Consumption proportional

to ﬂoclj‘ze
AS Model B: Consumption saturates as
1 + &S flock size increases,

C = aSe™® Model C: Consumption increases
. and then decreases with increasing
~ flock size, (2.1)

where a and b are parameters of the models. Each model is
a more explicit statement of the hypothesis that “birds for-
age more efficiently in larger flocks” (Figure 2.1). The “null
hypothesis” is the model that forage efficiency is indepen-
dent of flock size, or C = a. In the Popperian confrontation
models A, B, and C would individually be “tested” against
the null hypothesis. In a Lakatosian world the confrontation
would be between the four competing models (A, B, C, and
the “null”).

One can think of hypotheses and models in a hierarchic
fashion with models simply being a more specific version of
a hypothesis. Furthermore, particular parameter values of
the models are even more specific hypotheses. Indeed, in
later  chapters that deal with probability, likelihood, and
Bayes’ theorem, we use the word “hypothesis” to refer to par-
ticular parameter values of specific mathematical models.
The use of “hypothesis” with reference to probabilities is un-
fortunate, though necessitated by the general statistical us-
age, but do not confuse the distinction between a hypoth-
esis as a general statement about the natural world and the
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FIGURE 2.1. Three models of how foraging efficiency might be affected by

flock size. The flat line is the null hypothesis that flock size does not affect
foraging efficiency.

variety of mathematical models that can be used to repre-
sent the hypothesis.

We use models to evaluate hypotheses in terms of their
ability both to explain existing data and predict other as-
pects of nature. We use models to combine what we know
with our best guesses about what we do not know. The equa-
tions of a model represent a very specific expression of the
hypothesis. For example, a hypothesis might be that “preda-
tion has a significant effect on the average abundance of the
population of X.” Models of this hypothesis would describe
the interaction between the organism and its predators in
the context of specific mathematical forms (one of which—
the null model—could include no predation). Were such
models confronted with abundance data, we might find that
models including predation explained the abundance of X
no better than a model without predation. We would then
have some evidence that the hypothesis is incorrect. In this
“Lakatosian” view of hypotheses and models, the individual
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models are the surrounding belt that defends the core hy-
pothesis. We chip away at the individual model and eventu-
ally, as we exhaust the possibilities of different mathematical
representations of predation, decrease belief in the underly-
ing hypothesis of the importance of predation and increase
belief in the alternative hypotheses. Wise (1993) provides an
example of how this program is followed in understanding
the roles of spiders in,‘)ecological systems.

Models have a number of different purposes in the gen-
eral evaluation of sciefitific hypotheses. First, models help us
clarify verbal descriptions of nature and of mechanisms. For-
mulation of a model often forces the researcher to think
about processes that he or she had previously ignored. The
formulation leads to identification of parameters that must
be measured and often helps crystallize thinking about the
processes involved.

Second, models often help us understand which are the
important parameters and processes and which ones are not
important. For example, in the formulation of a model we
often see that combinations of parameters, rather than the
individual parameters themselves, determine the behavior of
the system (see Mangel and Clark, 1988, epilogue). Models
thus allow us to rank the importance of different factors
about the phenomenon in a quantitative manner.

Third, since a model is not a hypothesis we must admit
from the outset that there is no “fully correct” model. In-
stead, there are sequences of models, some of which may be
better than others as tools for understanding the natural
world. Different models of the same phenomenon can be
quite useful, as we shall see in several of the case studies
presented later. Different models allow us to assess the val-
idity of different assumptions and, in some cases, of fully
different hypotheses. The development of different models
usually represents a progression in the understanding of the
natural system. This is especially important; one must focus
on the system of interest and be willing to forego the model
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BOX 2.1
SEPARATING HYPOTHESES AND MODELS: A SCENARIO FROM
CLassICAL PHysics

Here we expand upon an example used by Mangel and
Clark (1988). This example requires elementary physics. En-
vision a mass M attached to a spring which is then attached
to a ceiling. We pull the ball away from the ceiling and let it
go; the ball starts to oscillate. Our goal is to understand what
is happening. We begin with the usual hypothesis of New-
ton’s second law of motion: F = Ma (force equals mass times
acceleration). If X(¢) denotes the displacement of the mass
from the original resting spot at time ¢, then the simplest
model for the restoring force is that it is proportional to the
displacement

da’x

Model 1: == - KX

de? (B2.1)

Here d®X/df® is the acceleration. The solution of this dif-
ferential equation (which you may have once studied in
physics or calculus) leads to two important predictions. First,
this simple model predicts that the spring will oscillate for-
ever. Second, the frequency of oscillations depends on the
combination YK/M and not on K or M independently; this is
something that we could not have determined without the
model.

However, there are problems. Real springs ultimately slow
down and stop oscillating. Do we conclude that the hypoth-
esis F = Ma is wrong or that the model is missing some-
thing? For example, we have ignored frictional forces which
tend to slow things down according to the size of their veloc-
ity. Hence, we might modify model 1 to obtain

2
Model 2: de—§= - KX — KV,
dt (B2.2)
where V = dX/dt is the velocity and we have added another
parameter K; that relates the frictional force and velocity.

BOX 2.1 CONT.

Once again, by solving the equation we could learn that the
answer does not depend on K itself but on the ratio K,/ M,
and that model 2 predicts that the spring will slow down.
Consequently, this is a clear improvement in the model with-
out any change of hypothesis.

However, real spririgs slow down and stop in a finite time,
but the spring described by model 2 will only stop as time
becomes infinite. Once more, we conclude that there is a
problem with the mgdel and might introduce

R P B 3

Model 3: M 7, i KX - KiV— KV, (B2.3)

where we have added yet another parameter, which now re-
lates the friction force to the cube of the velocity. The solu-
tion of Eqﬁ‘ation B2.3 requires advanced methods and is usu-
ally not treated in introductory courses. Note, however, that

. these three models are “nested”: we obtain model 2 or model

1 from model 3 by setting certain parameters equal to 0.

Thus, with the single hypothesis F = Ma, we have at least
three different models and could confront these models with
the observations. Surely we believe that none of these is “cor-
rect,” but that they are increasingly better descriptions of real-
ity within the hypothesis.

Now suppose that the mass is a ball contéining sand and
that there is a hole in the bottom so that the sand falls out as
the oscillations occur. In this case, our hypothesis is no

-longer correct, because F = Ma assumes that the mass is

constant. In more advanced physics courses, one learns that
the appropriate hypothesis for the case in which the mass is
a changing function of time, M(¢), is F = (d/dt) (momen-
tum), where momentum = M(¢) V. This is an alternate hy-
pothesis, which requires another series of models like the
ones we just discussed.
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when a better one arises (that is, don’t fall in love with your
model). Complicated models with more parameters and
mechanisms will usually give better fits to data than simpler
models, but if our models are as cbmplicated as nature it-
self, then we may as well not bother with the model and
focus only on the natural situation. Simpler models often
provide insight that is more valuable and influential in guid-
ing thought than accurate numerical fits. In fact, although
the output of most models is numerical, the most influential
models are the ones in which the numerical output is not
needed to guide the qualitative understanding.

In summary, models allow us to tie together different
bodies of data and aid in the identification of salient, neces-

sary, and sufficient features of a system. The use of models
while planning an experiment may help identify variables

that will be confounded in the analysis of the results. Finally,
models allow us to explore the parameter space and analyze
multidimensional systems in ways that are virtually impossi-
ble from a purely empirical perspective.

Recognition of the model as a scientific tool has a num-
ber of important implications. First, one must try to validate
assumptions before starting, or at least keep track of the
untested assumptions. For example, the generally rancorous
discussion concerning optimality theory in biology over the
last twenty years was caused, in no small part, because both
sides failed to recognize the nature of the assumptions and
failed to clearly identify what was being tested and what was
not being tested (e.g., Stephens and Krebs 1986; Mitchell
and Valone 1990; Orzack 1993; Orzack and Sober 1994).
The typical scenario often went like this: A model of an “opti-
mally foraging animal” was constructed and compared with
data. The data and model never matched completely, so op-
ponents claimed that “optimal foraging” was disproved, while
proponents modified the model and tried again to obtain
agreement between the model and the data. And the argu-
ment continues.
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The idea that models should be used as a principal tool in
confronting hypotheses with data as arbitrator leads into a
natural discussion of “model validation.” It is a long-held
and common view that in ecological studies, models should
be “validated” by some kind of comparison of predictions of
the model and the data that motivated it (e.g., Naylor and
Finger 1967; Mankin et-al. 1975; Shaeffer 1980; Leggett and
Williams 1981; Feldmm; et al. 1984; Santer and Wigley 1990;
Wigley and Santer 1990). Adopting a Popperian view, if the
model is inconsistent ;ith any of the data, then it (and the
associated hypothesis)®should be rejected. The model would
be tested repeatedly, subjecting it to new challenges in the
form of new empirical data. A model that withstood re-
peated challenges could be considered as “valid” only in the
sense that it was not rejected. In contrast, adopting the
Lakatosian view, all models will be found inconsistent with
some of the 'data, and the question is which models are
most consistent and which ones meet the challenges of new
experiments and new data better. Thus, models are not vali-
dated; alternative models are options with different degrees
of belief (see Oreskes et al. 1994 for an excellent discussion
of this topic for models in the earth sciences). If one model
clearly fits the existing data best and has proven ability to
explain new data, we might have a very high degree of be-
lief. It is not validated—but is better than the competitors.
The favorite model of the current moment will likely be re-
placed by another model in the future. Levins (1966, 430—
31) wonderfully states the situation:

A mathematical model is neither an hypothesis nor a the-
ory. Unlike scientific hypotheses, a model is not verifiable
directly by an experiment. For all models are both true
and false. . . . The validation of a model is not that it is
“true” but that it generates good testable hypotheses rele-
vant to important problems. A model may be discarded in
favor of a more powerful one, but it usually is simply out-

31



CHAPTER TWO

grown when the live issues are not any longer those for
which it was designed. . . . The multiplicity of models is
imposed by the contradictory demands of a complex, het-
€rogeneous nature and a mind that can only cope with a
few variables at a time . . . individual models, while they
are essential for understanding reality, should not be con-
fused with that reality itself.

TYPES AND USES OF MODELS

The ecological literature is filled with different kinds of
models, which can be used for different kinds of investiga-
tions (Loehle 1983). One way to classify models is according

to dichotomies. Here we specify some of these differences,:
and in the applications chapters you will see the different

kinds of models in action.

Deterministic and Stochastic Models

" Deterministic models have no components that are inher-
ently uncertain, i.e., no parameters in the model are charac-
terized by probability distributions. In stochastic models, on
the other hand, some of the parameters are uncertain and
characterized by probability distributions. For fixed starting
values, a deterministic model will always produce the same
results, but the stochastic model will produce many differ-
ent results depending on the actual values the random vari-
ables take.

Statistical and Scientific Models

A scientific model begins with a description of how nature
might work, and proceeds from this description to a set of
predictions relating the independent and dependent vari-
ables. A statistical model foregoes any attempt to explain
why the variables interact the way they do, and simply at-
tempts to describe the relationship, with the assumption
that the relationship extends past the measured values. Re-

32

THE SCIENTIFIC METHOD AND MODELING

gression models are the standard form of such descriptions,
and Peters (1991) argued that the only predictive models in
ecology should be statistical ones; we consider this an overly
narrow viewpoint.

Static and Dynamic Models

Static models predjct a response to input variables that
does not change over time. Dynamic models involve re-
sponses that change;;over time. In this regard, dynamic
models become morg complicated because they often in-
volve the link of the'response between one period and the
next.

Quantitative and Qualitative Models

Quantitative models lead to detailed, numerical predic-
tions about responses, whereas qualitative models lead to
general descriptions about the responses. The ideal use of
models is to develop quantitative models from which quali-
tative insights can be gained. It is often reasonable to test
quantitative predictions that are based on simple models,
using estimated or averaged parameters, with the intention
of assessing how well the simple description of nature works.
Qualitative models, on the other hand, can be used more
broadly to describe regions in which one response is ex-
pected and regions in which a different response is ex-
pected. For example, when studying whether an insect of a
given age and physiological state will oviposit on a host of a
specified type, we might use a model (Mangel 1987) to di-
vide the “age/state” plane into one region in which oviposi-
tion will occur and one in which it will net occur. A quan-
titative model would attempt to determine the precise
location of the boundary, whereas a qualitative model would
recognize that such a boundary exists and then ask how the
responses would change in response to other parameters.
Such predictions are quite testable (Roitberg et al. 1992,
1993).
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Models for Understanding, Prediction, and Decision

We must recognize that in addition to different kinds of
models there are different uses of models. We may model a
natural system to broadly test our understanding of the
mechanisms in the system. However, models usually lead to
numerical predictions. In that case, we want to abstract
qualitative, intuitive understanding from the broad pattern
of the numerical predictions.

A model may be used for purposes of prediction. Such pre-
dictions can be both qualitative (e.g., “the system will/will not
respond to this effect”) and quantitative (e.g., “the level of
the response will be . . .”). A model is most effective, of
course, if it provides both understanding (of known patterns)
and prediction (about situations not yet encountered).

Finally, we can use the model as part of a decision-making .

process. In this case, the model provides a means for eval-
uating the potential effects of various kinds of decisions. It is
in this realm that models have the most to offer in terms of
practical application, but also where the greatest potential
danger lies.

NESTED MODELS

Very often, we want to develop different models for the
description of the same phenomenon. A particularly useful
way of doing this is by adding complexity so that the “next
model” contains the “previous model” as a special case, usu-
ally when some parameter (or parameters) is fixed. A family
of models is called nested if the simpler models are special
cases of the more complex models (see McCullagh and
Nelder 1989 for a general discussion).

As a specific example, suppose we had a set of observa-
tions of population abundance Y at a series of spatial sites,
indexed by i, and a number of independent variables mea-
sured at the same sites, such as water availability, ground
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cover, tree cover, insect abundance, etc. We denote these
variables with X;;, X;o, X;3, etc. (where Xy is the value of
the jth measured variable at site {). One model relating
these variables is

log(Y;) = po + ;1 X + paXio + psXis + E,, (2.2)
where the E; represent a source of uncertainty and the pa-
rameters p; are deten:fined during the confrontation with
the data. A model such as Equation 2.2 is called a log-linear
model, because the lggarithm of the dependent variable Y;
is assumed to be a linear function of the independent vari-
ables {X;}. The model Equation 2.2 is one of a family of
models that includes

log(Yi) = po + p1 Xy + X + E,
log(Y;) = po + ;11X + E,

log(Y;) = po + 11 Xix + psXis + E;,

log(Y;) = po + paXia + psX;s + E,,
log(Y;) = po + poXin + E,

log(Y;) = po + psXis + E, (2.3)

as some of the special cases. All the models in Equation
(2.3) are special cases of the full model when different pa-
rameters are set to zero; this family of models is said to be
nested. The same is true for some of the models in Equation
2.1 (reader, which ones?).

Many ecological models can be treated as nested models.
The Leslie life history model (Caswell 1989), used fre-
quently for age- or size-structured populations, is

Nav1,041 = $alNao for a > 1,
Nl,t = 3 maNa’,, (2‘4)
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where N, is the number of animals of age a at time ¢, s, is
the fraction of animals of age a surviving to age a + 1, and
m, is the reproduction by animals of age a. A special, and
therefore nested, case of the Leslie model is one without
age structure, which can be obtained by assuming that the
survival at each age is the same (so set Se = s) and that
reproduction at each age is the same (so set m, = m). Then
if N, is the total population size and B, = mN,,

Nivr = sN, + B,. (2.5)

The alternative to nested models is to consider models
that are structurally different, where we cannot change a
parameter to obtain one model from the other. In dealing
with non-nested models we can no longer simply ask if we

obtain better fits to the data by making the model more
complex, but we must see how well the alternative models fit

the data.

MODEL COMPLEXITY

Perhaps the most difficult decision in model building is
“How complex should the model be?” With microcomputers
and modern software it is €asy to build models quickly, to
run the models, and generate lots of output. It takes only a
few minutes to add additional variables to the model and if
we continue for a few hours, we could have a model with
dozens or hundreds of variables. What is the bestsized
model? There are usually two major factors influencing the
answer to this question. On one hand, we can always imag-
ine that the model would be better (“more realistic”) if we
added another component to it—something we have ob-
served in nature and hate to leave out. On the other hand,
if we have a smaller model, the computer will run faster,
fewer parameters will be needed, and the output will be eas-
ier to understand. Most neophytes are tempted to build very
large models, and we urge you to resist this temptation. Of
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course, the bestsized model depends on the purpose of the
model. Given this objective, the basic rule about model size
is

Let the data tell you.

There are quantitative methods for determining the opti-
mal size of a particular model (Ludwig and Walters 1985;
Linhart and Zucchini 3986; Walters 1986; Punt 1988; Gauch
1993). If the model igtoo simple, we risk leaving out signifi-
cant components of the system. If the model is too complex,
we will not have sufficient information in the data to distin-
guish between the possible parameter values of the model.

For example, many ecological analyses of population dy-
namics rely on the Leslie matrix with age-specific survival
and fecundity. If we wish to make projections of the popula-
tion size and have estimated survival and fecundity for only
a few individuals, we have the choice of several models. The
simplest model (e.g., Equation 2.5) would average the sur-
vival and fecundity over all ages; the most complex model
(e.g., Equation 2.4) would estimate the survival and fe?un- ‘
dity at each age from the data. If the species is long lived
and the number of individuals for whom survival and fecun-
dities has been measured is small, estimates of the age-spe-
cific survival and fecundity are likely to be poor, and it
would be better either to use a single value for all ages or at
least to average survival and fecundity over age groups. The
number of ages aggregated should depend on the amount
of data available and the number of age classes considered.

Linhart and Zucchini (1986) provide a formal framework
for considering different levels of model complexity in. the
reliability of model predictions. Their approach disﬁngunshes
between prediction error due to approximation, which de-
creases as model complexity increases, and prediction error
due to estimation, which increases as model complexity in-
creases. For any model and amount of data, the total predic-
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tion error will decrease and then increase as model complex-
ity increases—with respect to reliability of predictioh, there is
an optimal level of model complexity.

Linhart and Zucchini’s approach is consistent with almost
all quantitative work in this area that suggested the optimal
model size is much smaller than intuition dictates. Ludwig
and Walters (1985) obtained better predictions about man-
agement actions from a non-age-structured model, even
when the data were derived, by simulation, from an age-
structured model. That is, the “wrong” model can do better
than the “right” model in prediction if parameters must be
estimated. Similarly, Punt (1988) found very simple models
of fisheries management, which often ignored substantial

amounts of data, outperformed more complex models when

parameters had to be estimated and decisions made.

When the objective is something other than prediction b

accuracy, the complexity of the optimal mode may be quite
different. In Chapter 10, we show a fisheries example where
a complex model fits the available data no better than a
simpler model. However, the uncertainty in the sustainable
harvest is quite low for the simple model, but high for the
complex model. In this case the simple model under-repre-
sents the uncertainty, and we believe that a more complex
model provides a better representation of the uncertainty.

The complexity of the optimal model will depend on the
use of the model and on the data. Part of the work of the
ecological detective is to iterate between alternative models,
to understand their strengths and weaknesses, and to recog-
nize that the most appropriate model will change from ap-
plication to application.
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Probability and Probability
Models: Know Your Data

i

3

§
DESCRIPTIONS OF RANDOMNESS

The data we encounter in ecological settings involve differ-
ent kinds of randomness. Many ecological models describe
only the average, or modal, value of a parameter, but when
we compare models to data, we need methods for determin-
ing the probability of individual observations, given a spe-
cific model and a value for the mean or mode of the param-
eter. This requires that we describe the randomness in the
data. Similarly, when we build a model and want to generate
a distribution of some characteristic, we first need a way to
quantify the probability distribution associated with this
characteristic. This involves understanding both the nature
of your data and the appropriate probabilistic descriptions.

We assume that readers of this book are familiar with the
normal or Gaussian distribution (the familiar “bell-shaped
curve”). However, many of the distributions in nature are
not normal. The purpose of this chapter is to introduce
ideas about probability, describe a wide range of useful
probability distributions (and consider biological processes
that give rise to these distributions), and provide you with
the tools you need to use these distributions in your work.
We begin with advice on data and then review the concepts
of probability. After that, we describe a number of different
probability distributions and some of their ecological appli-
cations. We close with a description and illustration of the
“Monte Carlo” method for generating data and testing
models. :
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