
14
Count Data

Up to this point, the response variables have all been continuous measurements such as
weights, heights, lengths, temperatures, and growth rates. A great deal of the data collected
by scientists, medical statisticians and economists, however, is in the form of counts (whole
numbers or integers). The number of individuals that died, the number of firms going
bankrupt, the number of days of frost, the number of red blood cells on a microscope
slide, and the number of craters in a sector of lunar landscape are all potentially interesting
variables for study. With count data, the number 0 often appears as a value of the response
variable (consider, for example, what a 0 would mean in the context of the examples
just listed). In this chapter we deal with data on frequencies, where we count how many
times something happened, but we have no way of knowing how often it did not happen
(e.g. lightning strikes, bankruptcies, deaths, births). This is in contrast to count data on
proportions, where we know the number doing a particular thing, but also the number
not doing that thing (e.g. the proportion dying, sex ratios at birth, proportions of different
groups responding to a questionnaire).

Straightforward linear regression methods (assuming constant variance, normal errors)
are not appropriate for count data for four main reasons:

• The linear model might lead to the prediction of negative counts.

• The variance of the response variable is likely to increase with the mean.

• The errors will not be normally distributed.

• Zeros are difficult to handle in transformations.

In R, count data are handled very elegantly in a generalized linear model by specifying
family=poisson which sets errors = Poisson and link = log (see p. 515). The log link
ensures that all the fitted values are positive, while the Poisson errors take account of the
fact that the data are integer and have variances that are equal to their means.

A Regression with Poisson Errors

The following example has a count (the number of reported cancer cases per year per clinic)
as the response variable, and a single continuous explanatory variable (the distance from a
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nuclear plant to the clinic in km). The question is whether or not proximity to the reactor
affects the number of cancer cases.

clusters<-read.table("c:\\temp\\clusters.txt",header=T)
attach(clusters)
names(clusters)

[1] "Cancers" "Distance"

plot(Distance,Cancers)

There seems to be a downward trend in cancer cases with distance (see the plot below).
But is the trend significant? We do a regression of cases against distance, using a GLM
with Poisson errors:

model1<-glm(Cancers~Distance,poisson)
summary(model1)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.186865 0.188728 0.990 0.3221
Distance -0.006138 0.003667 -1.674 0.0941 .

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 149.48 on 93 degrees of freedom
Residual deviance: 146.64 on 92 degrees of freedom
AIC: 262.41

The trend does not look to be significant, but look at the residual deviance. It is assumed
that this is the same as the residual degrees of freedom. The fact that residual deviance
is larger than residual degrees of freedom indicates that we have overdispersion (extra,
unexplained variation in the response). We compensate for the overdispersion by refitting
the model using quasi-Poisson rather than Poisson errors:

model2<-glm(Cancers~Distance,quasipoisson)
summary(model2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.186865 0.235341 0.794 0.429
Distance -0.006138 0.004573 -1.342 0.183

(Dispersion parameter for quasipoisson family taken to be 1.555271)

Null deviance: 149.48 on 93 degrees of freedom
Residual deviance: 146.64 on 92 degrees of freedom
AIC: NA

Compensating for the overdispersion has increased the p value to 0.183, so there is no
compelling evidence to support the existence of a trend in cancer incidence with distance
from the nuclear plant. To draw the fitted model through the data, you need to understand
that the GLM with Poisson errors uses the log link, so the parameter estimates and the
predictions from the model (the ‘linear predictor’) are in logs, and need to be antilogged
before the (non-significant) fitted line is drawn.
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xv<-seq(0,100,.1
yv<-predict(model2,list(Distance=xv))
lines(xv,exp(yv))
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Analysis of Deviance with Count Data

In our next example the response variable is a count of infected blood cells per mm2 on
microscope slides prepared from randomly selected individuals. The explanatory variables
are smoker (logical, yes or no), age (three levels, under 20, 21 to 59, 60 and over), sex
(male or female) and body mass score (three levels, normal, overweight, obese).

count<-read.table("c:\\temp\\cells.txt",header=T)
attach(count)
names(count)

[1] "cells" "smoker" "age" "sex" "weight"

It is always a good idea with count data to get a feel for the overall frequency distribution
of counts using table:

table(cells)

0 1 2 3 4 5 6 7
314 75 50 32 18 13 7 2

Most subjects (314 of them) showed no damaged cells, and the maximum of 7 was observed
in just two patients.

We begin data inspection by tabulating the main effect means:
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tapply(cells,smoker,mean)

FALSE TRUE
0.5478723 1.9111111

tapply(cells,weight,mean)

normal obese over
0.5833333 1.2814371 0.9357143

tapply(cells,sex,mean)

female male
0.6584507 1.2202643

tapply(cells,age,mean)

mid old young
0.8676471 0.7835821 1.2710280

It looks as if smokers have a substantially higher mean count than non-smokers, that
overweight and obese subjects had higher counts than normal weight, males had a higher
count that females, and young subjects had a higher mean count than middle-aged or older
people. We need to test whether any of these differences are significant and to assess
whether there are interactions between the explanatory variables.

model1<-glm(cells~smoker*sex*age*weight,poisson)
summary(model1)

Null deviance: 1052.95 on 510 degrees of freedom
Residual deviance: 736.33 on 477 degrees of freedom
AIC: 1318

Number of Fisher Scoring iterations: 6

The residual deviance (736.33) is much greater than the residual degrees of freedom (477),
indicating overdispersion, so before interpreting any of the effects, we should refit the model
using quasi-Poisson errors:

model2<-glm(cells~smoker*sex*age*weight,quasipoisson)
summary(model2)

Call:
glm(formula = cells ~ smoker * sex * age * weight, family = quasipoisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.236 -1.022 -0.851 0.520 3.760

Coefficients: (2 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.8329 0.4307 -1.934 0.0537 .
smokerTRUE -0.1787 0.8057 -0.222 0.8246
sexmale 0.1823 0.5831 0.313 0.7547
ageold -0.1830 0.5233 -0.350 0.7267
ageyoung 0.1398 0.6712 0.208 0.8351
weightobese 1.2384 0.8965 1.381 0.1678
weightover -0.5534 1.4284 -0.387 0.6986
smokerTRUE:sexmale 0.8293 0.9630 0.861 0.3896
smokerTRUE:ageold -1.7227 2.4243 -0.711 0.4777
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smokerTRUE:ageyoung 1.1232 1.0584 1.061 0.2892
sexmale:ageold -0.2650 0.9445 -0.281 0.7791
sexmale:ageyoung -0.2776 0.9879 -0.281 0.7788
smokerTRUE:weightobese 3.5689 1.9053 1.873 0.0617 .
smokerTRUE:weightover 2.2581 1.8524 1.219 0.2234
sexmale:weightobese -1.1583 1.0493 -1.104 0.2702
sexmale:weightover 0.7985 1.5256 0.523 0.6009
ageold:weightobese -0.9280 0.9687 -0.958 0.3386
ageyoung:weightobese -1.2384 1.7098 -0.724 0.4693
ageold:weightover 1.0013 1.4776 0.678 0.4983
ageyoung:weightover 0.5534 1.7980 0.308 0.7584
smokerTRUE:sexmale:ageold 1.8342 2.1827 0.840 0.4011
smokerTRUE:sexmale:ageyoung -0.8249 1.3558 -0.608 0.5432
smokerTRUE:sexmale: -2.2379 1.7788 -1.258 0.2090
weightobese
smokerTRUE:sexmale:weightover -2.5033 2.1120 -1.185 0.2365
smokerTRUE:ageold: 0.8298 3.3269 0.249 0.8031
weightobese
smokerTRUE:ageyoung: -2.2108 1.0865 -2.035 0.0424 *
weightobese
smokerTRUE:ageold: 1.1275 1.6897 0.667 0.5049
weightover
smokerTRUE:ageyoung:weightover -1.6156 2.2168 -0.729 0.4665
sexmale:ageold:weightobese 2.2210 1.3318 1.668 0.0960 .
sexmale:ageyoung:weightobese 2.5346 1.9488 1.301 0.1940
sexmale:ageold:weightover -1.0641 1.9650 -0.542 0.5884
sexmale:ageyoung:weightover -1.1087 2.1234 -0.522 0.6018
smokerTRUE:sexmale:ageold: -1.6169 3.0561 -0.529 0.5970
weightobese
smokerTRUE:sexmale:ageyoung NA NA NA NA
weightobese
smokerTRUE:sexmale:ageold: NA NA NA NA
weightover
smokerTRUE:sexmale:ageyoung: 2.4160 2.6846 0.900 0.3686
weightover

(Dispersion parameter for quasipoisson family taken to be 1.854815)

Null deviance: 1052.95 on 510 degrees of freedom
Residual deviance: 736.33 on 477 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6

There is an apparently significant three-way interaction between smoking, age and obesity
�p = 0�0424�. There were too few subjects to assess the four-way interaction (see the NAs
in the table), so we begin model simplification by removing the highest-order interaction:

model3<-update(model2, ~. -smoker:sex:age:weight)
summary(model3)

Call:
glm(formula = cells ~ smoker + sex + age + weight + smoker:sex +

smoker:age + sex:age + smoker:weight + sex:weight + age:weight +



532 THE R BOOK

smoker:sex:age + smoker:sex:weight + smoker:age:weight +
sex:age:weight, family = quasipoisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.2442 -1.0477 -0.8921 0.5195 3.7613

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.897195 0.436988 -2.053 0.04060 *
smokerTRUE 0.030263 0.735386 0.041 0.96719
sexmale 0.297192 0.570009 0.521 0.60234
ageold -0.118726 0.528165 -0.225 0.82224
ageyoung 0.289259 0.639618 0.452 0.65130
weightobese 1.302660 0.898307 1.450 0.14768
weightover -0.005052 1.027198 -0.005 0.99608
smokerTRUE:sexmale 0.527345 0.867294 0.608 0.54345
smokerTRUE:ageold -0.566584 1.700590 -0.333 0.73915
smokerTRUE:ageyoung 0.757297 0.939746 0.806 0.42073
sexmale:ageold -0.379884 0.935365 -0.406 0.68483
sexmale:ageyoung -0.610703 0.920969 -0.663 0.50758
smokerTRUE:weightobese 3.924591 1.475476 2.660 0.00808 **
smokerTRUE:weightover 1.192159 1.259888 0.946 0.34450
sexmale:weightobese -1.273202 1.040701 -1.223 0.22178
sexmale:weightover 0.154097 1.098781 0.140 0.88853
ageold:weightobese -0.993355 0.970484 -1.024 0.30656
ageyoung:weightobese -1.346913 1.459454 -0.923 0.35653
ageold:weightover 0.454217 1.090260 0.417 0.67715
ageyoung:weightover -0.483955 1.300866 -0.372 0.71004
smokerTRUE:sexmale:ageold 0.771116 1.451512 0.531 0.59549
smokerTRUE:sexmale:ageyoung -0.210317 1.140384 -0.184 0.85376
smokerTRUE:sexmale:weightobese -2.500668 1.369941 −1.825 0.06857 .
smokerTRUE:sexmale:weightover -1.110222 1.217531 -0.912 0.36230
smokerTRUE:ageold:weightobese -0.882951 1.187871 -0.743 0.45766
smokerTRUE:ageyoung:weightobese -2.453315 1.047067 −2.343 0.01954 *
smokerTRUE:ageold:weightover 0.823018 1.528233 0.539 0.59045
smokerTRUE:ageyoung:weightover 0.040795 1.223664 0.033 0.97342
sexmale:ageold:weightobese 2.338617 1.324805 1.765 0.07816 .
sexmale:ageyoung:weightobese 2.822032 1.623849 1.738 0.08288 .
sexmale:ageold:weightover -0.442066 1.545451 -0.286 0.77497
sexmale:ageyoung:weightover 0.357807 1.291194 0.277 0.78181

(Dispersion parameter for quasipoisson family taken to be 1.847991)

Null deviance: 1052.95 on 510 degrees of freedom
Residual deviance: 737.87 on 479 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6

The remaining model simplification is left to you as an exercise. Your minimal adequate
model might look something like this:

summary(model18)

Call:
glm(formula = cells ~ smoker + weight + smoker:weight, family =
quasipoisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.6511 -1.1742 -0.9148 0.5533 3.6436
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.8712 0.1760 -4.950 1.01e-06 ***
smokerTRUE 0.8224 0.2479 3.318 0.000973 ***
weightobese 0.4993 0.2260 2.209 0.027598 *
weightover 0.2618 0.2522 1.038 0.299723
smokerTRUE:weightobese 0.8063 0.3105 2.597 0.009675 **
smokerTRUE:weightover 0.4935 0.3442 1.434 0.152226

(Dispersion parameter for quasipoisson family taken to be 1.827927)

Null deviance: 1052.95 on 510 degrees of freedom
Residual deviance: 737.87 on 479 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 6

This model shows a highly significant interaction between smoking and weight in deter-
mining the number of damaged cells, but there are no convincing effects of age or sex. In
a case like this, it is useful to produce a summary table to highlight the effects:

tapply (cells,list(smoker,weight),mean)

normal obese over
FALSE 0.4184397 0.689394 0.5436893
TRUE 0.9523810 3.514286 2.0270270

The interaction arises because the response to smoking depends on body weight: smoking
adds a mean of about 0.5 damaged cells for individuals with normal body weight, but adds
2.8 damaged cells for obese people.

It is straightforward to turn the summary table into a barplot:

barplot(tapply(cells,list(smoker,weight),mean),col=c(2,7),beside=T)
legend(1.2,3.4,c("non","smoker"),fill=c(2,7))
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Analysis of Covariance with Count Data

In this next example the response is a count of the number of plant species on plots that have
different biomass (a continuous explanatory variable) and different soil pH (a categorical
variable with three levels: high, mid and low).

species<-read.table("c:\\temp\\species.txt",header=T)
attach(species)
names(species)

[1] "pH" "Biomass" "Species"

plot(Biomass,Species,type="n")
spp<-split(Species,pH)
bio<-split(Biomass,pH)
points(bio[[1]],spp[[1]],pch=16)
points(bio[[2]],spp[[2]],pch=17)
points(bio[[3]],spp[[3]])

Note the use of split to create separate lists of plotting coordinates for the three levels
of pH. It is clear that Species declines with Biomass, and that soil pH has a big effect
on Species, but does the slope of the relationship between Species and Biomass depend
on pH? The lines look reasonably parallel from the scatterplot. This is a question about
interaction effects, and in analysis of covariance, interaction effects are about differences
between slopes:
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model1<-glm(Species~ Biomass*pH,poisson)
summary(model1)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.76812 0.06153 61.240 < 2e-16 ***
Biomass -0.10713 0.01249 -8.577 < 2e-16 ***
pHlow -0.81557 0.10284 -7.931 2.18e-15 ***
pHmid -0.33146 0.09217 -3.596 0.000323 ***
Biomass:pHlow -0.15503 0.04003 -3.873 0.000108 ***
Biomass:pHmid -0.03189 0.02308 -1.382 0.166954
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 452.346 on 89 degrees of freedom
Residual deviance: 83.201 on 84 degrees of freedom
AIC: 514.39

Number of Fisher Scoring iterations: 4

We can test for the need for different slopes by comparing this maximal model (with
six parameters) with a simpler model with different intercepts but the same slope (four
parameters):

model2<-glm(Species~Biomass+pH,poisson)
anova(model1,model2,test="Chi")

Analysis of Deviance Table

Model 1: Species ~ Biomass * pH
Model 2: Species ~ Biomass + pH

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 84 83.201
2 86 99.242 -2 -16.040 0.0003288

The slopes are very significantly different �p = 0�000 33�, so we are justified in retaining
the more complicated model1.

Finally, we draw the fitted lines through the scatterplot, using predict:

xv<-seq(0,10,0.1)
levels(pH)

[1] "high" "low" "mid"

length(xv)

[1] 101

phv<-rep("high",101)
yv<-predict(model1,list(pH=factor(phv),Biomass=xv),type="response")
lines(xv,yv)
phv<-rep("mid",101)
yv<-predict(model1,list(pH=factor(phv),Biomass=xv),type="response")
lines(xv,yv)
phv<-rep("low",101)
yv<-predict(model1,list(pH=factor(phv),Biomass=xv),type="response")
lines(xv,yv)
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Note the use of type="response" in the predict function. This ensures that yv is calculated
as Species rather than log(Species), and means we do not need to back-transform using
antilogs before drawing the lines (compare with the example on p. 579). You could make
the R code more elegant by writing a function to plot any number of lines, depending on
the number of levels of the factor (three levels of pH in this case).

Frequency Distributions

Here are data on the numbers of bankruptcies in 80 districts. The question is whether there is
any evidence that some districts show greater than expected numbers of cases. What would
we expect? Of course we should expect some variation, but how much, exactly? Well that
depends on our model of the process. Perhaps the simplest model is that absolutely nothing
is going on, and that every singly bankruptcy case is absolutely independent of every other.
That leads to the prediction that the numbers of cases per district will follow a Poisson
process, a distribution in which the variance is equal to the mean (see p. 250). Let’s see
what the data show.

case.book<-read.table("c:\\temp\\cases.txt",header=T)
attach(case.book)
names(case.book)

[1] "cases"

First we need to count the numbers of districts with no cases, one case, two cases, and
so on. The R function that does this is called table:

frequencies<-table(cases)
frequencies
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cases
0 1 2 3 4 5 6 7 8 9 10

34 14 10 7 4 5 2 1 1 1 1

There were no cases at all in 34 districts, but one district had 10 cases. A good way to
proceed is to compare our distribution (called frequencies) with the distribution that would
be observed if the data really did come from a Poisson distribution as postulated by our
model. We can use the R function dpois to compute the probability density of each of the
11 frequencies from 0 to 10 (we multiply the probability produced by dpois by the total
sample of 80 to obtain the predicted frequencies). We need to calculate the mean number
of cases per district: this is the Poisson distribution’s only parameter:

mean(cases)

[1] 1.775

The plan is to draw two distributions side by side, so we set up the plotting region:

par(mfrow=c(1,2))

Now we plot the observed frequencies in the left-hand panel and the predicted, Poisson
frequencies in the right-hand panel:

barplot(frequencies,ylab="Frequency",xlab="Cases",col="red")

barplot(dpois(0:10,1.775)*80,names=as.character(0:10),
ylab="Frequency",xlab="Cases",col="red")
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The distributions are very different: the mode of the observed data is 0, but the mode of
the Poisson with the same mean is 1; the observed data contained examples of 8, 9 and 10
cases, but these would be highly unlikely under a Poisson process. We would say that the
observed data are highly aggregated; they have a variance–mean ratio much greater than 1
(the Poisson distribution, of course, has a variance–mean ratio of 1):

var(cases)/mean(cases)

[1] 2.99483

So, if the data are not Poisson distributed, how are they distributed? A good candidate
distribution where the variance–mean ratio is this big (c. 3.0) is the negative binomial
distribution (see p. 252). This is a two-paramter distribution: the first parameter is the mean
number of cases (1.775), and the second is called the clumping parameter, k (measuring the
degree of aggregation in the data: small values of k�k < 1� show high aggregation, while
large values of k�k > 5� show randomness). We can get an approximate estimate of the
magnitude of k from

k̂ = x2

s2 − x
�

We can work this out:

mean(cases)^2/(var(cases)-mean(cases))

[1] 0.8898003

so we shall work with k= 0�89. How do we compute the expected frequencies? The density
function for the negative binomial distribution is dnbinom and it has three arguments: the
frequency for which we want the probability (in our case 0 to 10), the number of successes
(in our case 1), and the mean number of cases (1.775); we multiply by the total number of
cases (80) to obtain the expected frequencies

exp<-dnbinom(0:10,1,mu=1.775)*80

We will draw a single figure in which the observed and expected frequencies are drawn
side by side. The trick is to produce a new vector (called both) which is twice as long
as the observed and expected frequency vectors �2 × 11 = 22�. Then, we put the observed
frequencies in the odd-numbered elements (using modulo 2 to calculate the values of the
subscripts), and the expected frequencies in the even-numbered elements:

both<-numeric(22)
both[1:22 %% 2 != 0]<-frequencies
both[1:22 %% 2 == 0]<-exp

On the x axis, we intend to label only every other bar:

labels<-character(22)
labels[1:22 %% 2 == 0]<-as.character(0:10)

Now we can produce the barplot, using white for the observed frequencies and grey for the
negative binomial frequencies:

par(mfrow=c(1,1))
barplot(both,col=rep(c("white","grey"),11),names=labels,ylab="Frequency",

xlab="Cases")
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Now we need to add a legend to show what the two colours of the bars mean. You can
locate the legend by trial and error, or by left-clicking mouse when the cursor is in the
correct position, using the locator(1) function (see p. 257):

legend(16,30,c("Observed","Expected"), fill=c("white","grey"))

The fit to the negative binomial distribution is much better than it was with the Poisson
distribution, especially in the right-hand tail. But the observed data have too many 0s and
too few 1s to be represented perfectly by a negative binomial distribution. If you want to
quantify the lack of fit between the observed and expected frequency distributions, you can
calculate Pearson’s chi-squared

∑
�O − E�2/E based on the number of comparisons that

have expected frequency greater than 4:

exp

[1] 28.8288288 18.4400617 11.7949944 7.5445460 4.8257907 3.0867670
[7] 1.9744185 1.2629164 0.8078114 0.5167082 0.3305070

If we accumulate the rightmost six frequencies, then all the values of exp will be bigger
than 4. The degrees of freedom are then given by the number of comparisons (6) - the
number of parameters estimated from the data (2 in our case) −1 (for contingency, because
the total frequency must add up to 80) = 3. We use a gets arrow to reduce the lengths of
the observed and expected vectors, creating an upper interval called 5+ for ‘5 or more’:

cs<-factor(0:10)
levels(cs)[6:11]<-"5+"
levels(cs)
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[1] "0" "1" "2" "3" "4" "5+"

Now make the two shorter vectors ‘of’ and ‘ef’ (for observed and expected frequencies):

ef<-as.vector(tapply(exp,cs,sum))
of<-as.vector(tapply(frequencies,cs,sum))

Finally we can compute the chi-squared value measuring the difference between the observed
and expected frequency distributions, and use 1-pchisq to work out the p value:

sum((of-ef)ˆ2/ef)

[1] 3.594145

1-pchisq(3.594145,3)

[1] 0.3087555

We conclude that a negative binomial description of these data is reasonable (the observed
and expected distributions are not significantly different; p = 0�31).

Overdispersion in Log-linear Models

The data analysed in this section refer to children from Walgett, New South Wales, Australia,
who were classified by sex (with two levels: male (M) and female (F)), culture (also
with two levels: Aboriginal (A) and not (N)), age group (with four levels: F0 (primary),
F1, F2 and F3) and learner status (with two levels: average (AL) and slow (SL)). The
response variable is a count of the number of days absent from school in a particular school
year.

library(MASS)
data(quine)
attach(quine)
names(quine)

[1] "Eth" "Sex" "Age" "Lrn" "Days"

We begin with a log-linear model for the counts, and fit a maximal model containing all
the factors and all their interactions:

model1<-glm(Days~Eth*Sex*Age*Lrn,poisson)
summary(model1)

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2073.5 on 145 degrees of freedom
Residual deviance: 1173.9 on 118 degrees of freedom
AIC: 1818.4

Next, we check the residual deviance to see if there is overdispersion. Recall that the
residual deviance should be equal to the residual degrees of freedom if the Poisson errors
assumption is appropriate. Here it is 1173.9 on 118 d.f., indicating overdispersion by a
factor of roughly 10. This is much too big to ignore, so before embarking on model
simplification we try a different approach, using quasi-Poisson errors to account for the
overdispersion:
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model2<-glm(Days~Eth*Sex*Age*Lrn,quasipoisson)
summary(model2)

Deviance Residuals:

Min 1Q Median 3Q Max
-7.3872 -2.5129 -0.4205 1.7424 6.6783

Coefficients: (4 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0564 0.3346 9.135 2.22e-15 ***
EthN -0.1386 0.4904 -0.283 0.7780
SexM -0.4914 0.5082 -0.967 0.3356
AgeF1 -0.6227 0.5281 -1.179 0.2407
AgeF2 -2.3632 2.2066 -1.071 0.2864
AgeF3 -0.3784 0.4296 -0.881 0.3802
LrnSL -1.9577 1.8120 -1.080 0.2822
EthN:SexM -0.7524 0.8272 -0.910 0.3649
EthN:AgeF1 0.1029 0.7427 0.139 0.8901
EthN:AgeF2 -0.5546 3.8094 -0.146 0.8845
EthN:AgeF3 0.0633 0.6194 0.102 0.9188
SexM:AgeF1 0.4092 0.9372 0.437 0.6632
SexM:AgeF2 3.1098 2.2506 1.382 0.1696
SexM:AgeF3 1.1145 0.6173 1.806 0.0735 .
EthN:LrnSL 2.2588 1.9474 1.160 0.2484
SexM:LrnSL 1.5900 1.9448 0.818 0.4152
AgeF1:LrnSL 2.6421 1.8688 1.414 0.1601
AgeF2:LrnSL 4.8585 2.8413 1.710 0.0899 .
AgeF3:LrnSL NA NA NA NA
EthN:SexM:AgeF1 -0.3105 1.6756 -0.185 0.8533
EthN:SexM:AgeF2 0.3469 3.8928 0.089 0.9291
EthN:SexM:AgeF3 0.8329 0.9629 0.865 0.3888
EthN:SexM:LrnSL -0.1639 2.1666 -0.076 0.9398
EthN:AgeF1:LrnSL -3.5493 2.0712 -1.714 0.0892 .
EthN:AgeF2:LrnSL -3.3315 4.2739 -0.779 0.4373
EthN:AgeF3:LrnSL NA NA NA NA
SexM:AgeF1:LrnSL -2.4285 2.1901 -1.109 0.2697
SexM:AgeF2:LrnSL -4.1914 2.9472 -1.422 0.1576
SexM:AgeF3:LrnSL NA NA NA NA
EthN:SexM:AgeF1:LrnSL 2.1711 2.7527 0.789 0.4319
EthN:SexM:AgeF2:LrnSL 2.1029 4.4203 0.476 0.6351
EthN:SexM:AgeF3:LrnSL NA NA NA NA
- - -
Signif. codes: 0 '***'0.001 '**'0.01 '*'0.05 '.'0.1 ''1
(Dispersion parameter for quasipoisson family taken to be 9.514226)

Null deviance: 2073.5 on 145 degrees of freedom
Residual deviance: 1173.9 on 118 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5

Notice that certain interactions have not been estimated because of missing factor-level
combinations, as indicated by the zeros in the following table:

ftable(table(Eth,Sex,Age,Lrn))
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Eth Sex Age Lrn AL SL
A F F0 4 1

F1 5 10
F2 1 8
F3 9 0

M F0 5 3
F1 2 3
F2 7 4
F3 7 0

N F F0 4 1
F1 6 11
F2 1 9
F3 10 0

M F0 6 3
F1 2 7
F2 7 3
F3 7 0

This occurs because slow learners never get into Form 3.
Unfortunately, AIC is not defined for this model, so we cannot automate the simplification

using stepAIC. We need to do the model simplification long-hand, therefore, remembering
to do F tests (not chi-squared) because of the overdispersion. Here is the last step of the
simplification before obtaining the minimal adequate model. Do we need the age by learning
interaction?

model4<-update(model3,~. - Age:Lrn)
anova(model3,model4,test="F")

Analysis of Deviance Table

Resid. Df Res.Dev Df Deviance F Pr(>-F)
1 127 1280.52
2 129 1301.08 -2 -20.56 1.0306 0.3598

No we don’t. So here is the minimal adequate model with quasi-Poisson errors:

summary(model4)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.83161 0.30489 9.287 4.98e-16 ***
EthN 0.09821 0.38631 0.254 0.79973
SexM -0.56268 0.38877 -1.447 0.15023
AgeF1 -0.20878 0.35933 -0.581 0.56223
AgeF2 0.16223 0.37481 0.433 0.66586
AgeF3 -0.25584 0.37855 -0.676 0.50036
LrnSL 0.50311 0.30798 1.634 0.10479
EthN:SexM -0.24554 0.37347 -0.657 0.51206
EthN:AgeF1 -0.68742 0.46823 -1.468 0.14450
EthN:AgeF2 -1.07361 0.42449 -2.529 0.01264 *
EthN:AgeF3 0.01879 0.42914 0.044 0.96513
EthN:LrnSL -0.65154 0.45857 -1.421 0.15778
SexM:AgeF1 -0.26358 0.50673 -0.520 0.60385
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SexM:AgeF2 0.94531 0.43530 2.172 0.03171 *
SexM:AgeF3 1.35285 0.42933 3.151 0.00202 *
SexM:LrnSL -0.29570 0.41144 -0.719 0.47363
EthN:SexM:LrnSL 1.60463 0.57112 2.810 0.00573 *

(Dispersion parameter for quasipoisson family taken to be 9.833426)

Null deviance: 2073.5 on 145 degrees of freedom
Residual deviance: 1301.1 on 129 degrees of freedom

There is a very significant three-way interaction between ethnic origin, sex and learning
difficulty; non-Aboriginal slow-learning boys were more likely to be absent than non-
aboriginal boys without learning difficulties.

ftable(tapply(Days,list(Eth,Sex,Lrn),mean))

AL SL
A F 14.47368 27.36842

M 22.28571 20.20000
N F 13.14286 7.00000

M 13.36364 17.00000

Note, however, that amongst the pupils without learning difficulties it is the Aboriginal
boys who miss the most days, and it is Aboriginal girls with learning difficulties who have
the highest rate of absenteeism overall.

Negative binomial errors

Instead of using quasi-Poisson errors (as above) we could use a negative binomial model.
This is in the MASS library and involves the function glm.nb. The modelling proceeds in
exactly the same way as with a typical GLM:

model.nb1<-glm.nb(Days~Eth*Sex*Age*Lrn)
summary(model.nb1,cor=F)

Call:
glm.nb(formula = Days ~ Eth * Sex * Age * Lrn, init.theta =
1.92836014510701, link = log)

(DispersionparameterforNegativeBinomial(1.9284)family taken to be 1)

Null deviance: 272.29 on 145 degrees of freedom
Residual deviance: 167.45 on 118 degrees of freedom
AIC: 1097.3

Theta: 1.928
Std. Err.: 0.269

2 x log-likelihood: −1039.324
The output is slightly different than a conventional GLM: you see the estimated negative
binomial parameter (here called theta, but known to us as k and equal to 1.928) and
its approximate standard error (0.269) and 2 times the log-likelihood (contrast this with
the residual deviance from our quasi-Poisson model, which was 1301.1; see above). Note
that the residual deviance in the negative binomial model (167.45) is not 2 times the
log-likelihood.
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An advantage of the negative binomial model over the quasi-Poisson is that we can
automate the model simplification with stepAIC:

model.nb2<-stepAIC(model.nb1)
summary(model.nb2,cor=F)

Coefficients: (3 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.1693 0.3411 9.292 < 2e-16 ***
EthN -0.3560 0.4210 -0.845 0.397848
SexM -0.6920 0.4138 -1.672 0.094459 .
AgeF1 -0.6405 0.4638 -1.381 0.167329
AgeF2 -2.4576 0.8675 -2.833 0.004612 **
AgeF3 -0.5880 0.3973 -1.480 0.138885
LrnSL -1.0264 0.7378 -1.391 0.164179
EthN:SexM -0.3562 0.3854 -0.924 0.355364
EthN:AgeF1 0.1500 0.5644 0.266 0.790400
EthN:AgeF2 -0.3833 0.5640 -0.680 0.496746
EthN:AgeF3 0.4719 0.4542 1.039 0.298824
SexM:AgeF1 0.2985 0.6047 0.494 0.621597
SexM:AgeF2 3.2904 0.8941 3.680 0.000233 ***
SexM:AgeF3 1.5412 0.4548 3.389 0.000702 ***
EthN:LrnSL 0.9651 0.7753 1.245 0.213255
SexM:LrnSL 0.5457 0.8013 0.681 0.495873
AgeF1:LrnSL 1.6231 0.8222 1.974 0.048373 *
AgeF2:LrnSL 3.8321 1.1054 3.467 0.000527 ***
AgeF3:LrnSL NA NA NA NA
EthN:SexM:LrnSL 1.3578 0.5914 2.296 0.021684 *
EthN:AgeF1:LrnSL -2.1013 0.8728 -2.408 0.016058 *
EthN:AgeF2:LrnSL -1.8260 0.8774 -2.081 0.037426 *
EthN:AgeF3:LrnSL NA NA NA NA
SexM:AgeF1:LrnSL -1.1086 0.9409 -1.178 0.238671
SexM:AgeF2:LrnSL -2.8800 1.1550 -2.493 0.012651 *
SexM:AgeF3:LrnSL NA NA NA NA

(DispersionparameterforNegativeBinomial(1.8653)family taken tobe1)

Null deviance: 265.27 on 145 degrees of freedom
Residual deviance: 167.44 on 123 degrees of freedom
AIC: 1091.4

Theta: 1.865
Std. Err.: 0.258

2 x log-likelihood: −1043.409

model.nb3<-update(model.nb2,~. - Sex:Age:Lrn)
anova(model.nb3,model.nb2)

Likelihood ratio tests of Negative Binomial Models

theta Resid. df 2 x log-lik. Test df LR stat. Pr(Chi)
1 1.789507 125 -1049.111
2 1.865343 123 -1043.409 1 vs 2 2 5.701942 0.05778817

The sex-by-age-by-learning interaction does not survive a deletion test �p = 0�058�, nor
does ethnic-origin-by-age-by-learning �p = 0�115� nor age-by-learning �p = 0�150�:
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model.nb4<-update(model.nb3,~. - Eth:Age:Lrn)
anova(model.nb3,model.nb4)

Likelihood ratio tests of Negative Binomial Models

theta Resid. df 2 x log-lik. Test df LR stat. Pr(Chi)
1 1.724987 127 -1053.431
2 1.789507 125 -1049.111 1 vs 2 2 4.320086 0.1153202

model.nb5<-update(model.nb4,~. - Age:Lrn)
anova(model.nb4,model.nb5)

Likelihood ratio tests of Negative Binomial Models

theta Resid. df 2 x log-lik. Test df LR stat. Pr(Chi)
1 1.678620 129 -1057.219
2 1.724987 127 -1053.431 1 vs 2 2 3.787823 0.150482

summary(model.nb5,cor=F)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.91755 0.32626 8.942 < 2e-16 ***
EthN 0.05666 0.39515 0.143 0.88598
SexM -0.55047 0.39014 -1.411 0.15825
AgeF1 -0.32379 0.38373 -0.844 0.39878
AgeF2 -0.06383 0.42046 -0.152 0.87933
AgeF3 -0.34854 0.39128 -0.891 0.37305
LrnSL 0.57697 0.33382 1.728 0.08392 .
EthN:SexM -0.41608 0.37491 -1.110 0.26708
EthN:AgeF1 -0.56613 0.43162 -1.312 0.18965
EthN:AgeF2 -0.89577 0.42950 -2.086 0.03702 *
EthN:AgeF3 0.08467 0.44010 0.192 0.84744
SexM:AgeF1 -0.08459 0.45324 -0.187 0.85195
SexM:AgeF2 1.13752 0.45192 2.517 0.01183 *
SexM:AgeF3 1.43124 0.44365 3.226 0.00126 **
EthN:LrnSL -0.78724 0.43058 -1.828 0.06750 .
SexM:LrnSL -0.47437 0.45908 -1.033 0.30147
EthN:SexM:LrnSL 1.75289 0.58341 3.005 0.00266 **

(DispersionparameterforNegativeBinomial(1.6786)familytakentobe1)

Null deviance: 243.98 on 145 degrees of freedom
Residual deviance: 168.03 on 129 degrees of freedom
AIC: 1093.2

Theta: 1.679
Std. Err.: 0.22

2 x log-likelihood: −1057.219
The minimal adequate model, therefore, contains exactly the same terms as we obtained
with quasi-Poisson, but the significance levels are higher (e.g. the three-way interaction has
p=0�002 66 compared with p=0�005 73). We need to plot the model to check assumptions:

par(mfrow=c(1,2))
plot(model.nb5)
par(mfrow=c(1,1))
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The variance is well behaved and the residuals are close to normally distributed. The
combination of low p values plus the ability to use stepAIC makes glm.nb a very useful
modelling function for count data such as these.

Use of lmer with Complex Nesting

In this section we have count data (snails) so we want to use family = poisson. But we
have complicated spatial pseudoreplication arising from a split-plot design, so we cannot
use a GLM. The answer is to use generalized mixed models, lmer. The default method for a
generalized linear model fit with lmer has been switched from PQL to the Laplace method.
The Laplace method is more reliable than PQL, and is not so much slower to as to preclude
its routine use (Doug Bates, personal communication).

The syntax is extended in the usual way to accommodate the random effects (Chapter 19),
with slashes showing the nesting of the random effects, and with the factor associated
with the largest plot size on the left and the smallest on the right. We revisit the split-
plot experiment on biomass (p. 469) and analyse the count data on snails captured from
each plot. The model we want to fit is a generalized mixed model with Poisson errors
(because the data are counts) with complex nesting to take account of the four-level
split-plot design (Rabbit exclusion within Blocks, Lime treatment within Rabbit plots,
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3 Competition treatments within each Lime plot and 4 nutrient regimes within each
Competition plot):

counts<-read.table("c:\\temp\\splitcounts.txt",header=T)
attach(counts)
names(counts)

[1] "vals" "Block" "Rabbit" "Lime"
[5] "Competition" "Nutrient"

The syntax within lmer is very straightforward: fixed effects after the tilde ∼, then random
effects inside brackets, then the GLM family:

library(lme4)
model<-
lmer(vals~Nutrient+(1|Block/Rabbit/Lime/Competition),family=poisson)
summary(model)

Generalized linear mixed model fit using Laplace
Formula: vals ~ Nutrient + (1 | Block/Rabbit/Lime/Competition)
Family: poisson(log link)
AIC BIC logLik deviance

420.2 451.8 -202.1 404.2

Random effects:

Groups Name Variance Std.Dev.
Competition:(Lime:(Rabbit:Block)) (Intercept) 2.2660e-03 4.7603e-02
Lime:(Rabbit:Block) (Intercept) 5.0000e-10 2.2361e-05
Rabbit:Block (Intercept) 5.0000e-10 2.2361e-05
Block (Intercept) 5.0000e-10 2.2361e-05
number of obs: 384, groups: Competition:(Lime:(Rabbit:Block)),96;
Lime:(Rabbit:Block), 32; Rabbit:Block, 16; Block, 8
Estimated scale (compare to 1) 0.974339

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.10794 0.05885 18.826 <2e-16 ***
NutrientNP 0.11654 0.08063 1.445 0.148
NutrientO -0.02094 0.08338 -0.251 0.802
NutrientP -0.01047 0.08316 -0.126 0.900

Correlation of Fixed Effects:

(Intr) NtrnNP NtrntO
NutrientNP -0.725
NutrientO -0.701 0.512
NutrientP -0.703 0.513 0.496

There are no significant differences in snail density under any of the four nutrient
treatments (Fixed effects, minimum p = 0�148) and only Competition within Lime within
Rabbit within Block has an appreciable variance component (standard deviation 0.047 603).
Note that because we are using Poisson errors, the fixed effects are on the log scale (the
scale of the linear predictor; see p. 513). You might want to compare these best linear
unbiased predictors with the logs of the arithmetic mean snail counts:
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log(tapply(vals,Nutrient,mean))

N NP O P
1.108975 1.225612 1.088141 1.098612

The values are so close because in this case the random effects are so slight (see p. 627).
Note, too, that there is no evidence of overdispersion once the random effects have been
incorporated, and the estimated scale parameter is 0.974 339 (it would be 1 in a perfect
Poisson world).


