
13
Generalized Linear Models

We can use generalized linear models (GLMs) pronounced ‘glims’ – when the variance
is not constant, and/or when the errors are not normally distributed. Certain kinds of
response variables invariably suffer from these two important contraventions of the standard
assumptions, and GLMs are excellent at dealing with them. Specifically, we might consider
using GLMs when the response variable is:

• count data expressed as proportions (e.g. logistic regressions);

• count data that are not proportions (e.g. log-linear models of counts);

Mean

V
ar

ia
nc

e

0 2 4 6 8 10

0
1

2
3

4

Mean

V
ar

ia
nc

e

0 2 4 6 8 10

0
2

4
6

8
10

Mean

V
ar

ia
nc

e

0 2 4 6 8 10

0.
0

1.
0

2.
0

3.
0

Mean

V
ar

ia
nc

e

0 2 4 6 8 10

0
20

40
60

80
10

0

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

512 THE R BOOK

• binary response variables (e.g. dead or alive);

• data on time to death where the variance increases faster than linearly with the mean
(e.g. time data with gamma errors).

The central assumption that we have made up to this point is that variance was constant (top
left-hand graph). In count data, however, where the response variable is an integer and there
are often lots of zeros in the dataframe, the variance may increase linearly with the mean
(top tight). With proportion data, where we have a count of the number of failures of an
event as well as the number of successes, the variance will be an inverted U-shaped function
of the mean (bottom left). Where the response variable follows a gamma distribution (as in
time-to-death data) the variance increases faster than linearly with the mean (bottom right).
Many of the basic statistical methods such as regression and Student’s t test assume that
variance is constant, but in many applications this assumption is untenable. Hence the great
utility of GLMs.

A generalized linear model has three important properties:

• the error structure;

• the linear predictor;

• the link function.

These are all likely to be unfamiliar concepts. The ideas behind them are straightforward,
however, and it is worth learning what each of the concepts involves.

Error Structure

Up to this point, we have dealt with the statistical analysis of data with normal errors. In
practice, however, many kinds of data have non-normal errors: for example:

• errors that are strongly skewed;

• errors that are kurtotic;

• errors that are strictly bounded (as in proportions);

• errors that cannot lead to negative fitted values (as in counts).

In the past, the only tools available to deal with these problems were transformation of
the response variable or the adoption of non-parametric methods. A GLM allows the
specification of a variety of different error distributions:

• Poisson errors, useful with count data;

• binomial errors, useful with data on proportions;

• gamma errors, useful with data showing a constant coefficient of variation;

• exponential errors, useful with data on time to death (survival analysis).

GENERALIZED LINEAR MODELS 513

The error structure is defined by means of the family directive, used as part of the
model formula. Examples are

glm(y ~ z, family = poisson)

which means that the response variable y has Poisson errors, and

glm(y ~ z, family = binomial)

which means that the response is binary, and the model has binomial errors. As with previous
models, the explanatory variable z can be continuous (leading to a regression analysis) or
categorical (leading to an ANOVA-like procedure called analysis of deviance, as described
below).

Linear Predictor

The structure of the model relates each observed y value to a predicted value. The predicted
value is obtained by transformation of the value emerging from the linear predictor. The
linear predictor, � (eta), is a linear sum of the effects of one or more explanatory variables, xj:

�i =
p∑

j=1

xij�j

where the xs are the values of the p different explanatory variables, and the �s are the
(usually) unknown parameters to be estimated from the data. The right-hand side of the
equation is called the linear structure.

There are as many terms in the linear predictor as there are parameters, p, to be estimated
from the data. Thus, with a simple regression, the linear predictor is the sum of two terms
whose parameters are the intercept and the slope. With a one-way ANOVA with four
treatments, the linear predictor is the sum of four terms leading to the estimation of the
mean for each level of the factor. If there are covariates in the model, they add one term
each to the linear predictor (the slope of each relationship). Interaction terms in a factorial
ANOVA add one or more parameters to the linear predictor, depending upon the degrees
of freedom of each factor (e.g. there would be three extra parameters for the interaction
between a two-level factor and a four-level factor, because �2 − 1� × �4 − 1� = 3�.

To determine the fit of a given model, a GLM evaluates the linear predictor for each value
of the response variable, then compares the predicted value with a transformed value of y.
The transformation to be employed is specified in the link function, as explained below.
The fitted value is computed by applying the reciprocal of the link function, in order to get
back to the original scale of measurement of the response variable.

Link Function

One of the difficult things to grasp about GLMs is the relationship between the values of
the response variable (as measured in the data and predicted by the model in fitted values)
and the linear predictor. The thing to remember is that the link function relates the mean
value of y to its linear predictor. In symbols, this means that

� = g����

514 THE R BOOK

which is simple, but needs thinking about. The linear predictor, �, emerges from the linear
model as a sum of the terms for each of the p parameters. This is not a value of y (except
in the special case of the identity link that we have been using (implicitly) up to now). The
value of � is obtained by transforming the value of y by the link function, and the predicted
value of y is obtained by applying the inverse link function to �.

The most frequently used link functions are shown below. An important criterion in the
choice of link function is to ensure that the fitted values stay within reasonable bounds. We
would want to ensure, for example, that counts were all greater than or equal to 0 (negative
count data would be nonsense). Similarly, if the response variable was the proportion of
individuals that died, then the fitted values would have to lie between 0 and 1 (fitted values
greater than 1 or less than 0 would be meaningless). In the first case, a log link is appropriate
because the fitted values are antilogs of the linear predictor, and all antilogs are greater than
or equal to 0. In the second case, the logit link is appropriate because the fitted values are
calculated as the antilogs of the log odds, log�p/q�.

By using different link functions, the performance of a variety of models can be compared
directly. The total deviance is the same in each case, and we can investigate the consequences
of altering our assumptions about precisely how a given change in the linear predictor brings
about a response in the fitted value of y. The most appropriate link function is the one which
produces the minimum residual deviance.

Canonical Link Functions

The canonical link functions are the default options employed when a particular error
structure is specified in the family directive in the model formula. Omission of a link
directive means that the following settings are used:

Error Canonical link

normal identity

poisson log

binomial logit

Gamma reciprocal

You should try to memorize these canonical links and to understand why each is appropriate to
its associated error distribution. Note that only gamma errors have a capital initial letter in R.

Choosing between using a link function (e.g. log link) and transforming the response
variable (i.e. having log�y� as the response variable rather than y) takes a certain amount
of experience. The decision is usually based on whether the variance is constant on the
original scale of measurement. If the variance was constant, you would use a link function.
If the variance increased with the mean, you would be more likely to log transform the
response.

Proportion Data and Binomial Errors

Proportion data have three important properties that affect the way the data should be
analysed:

GENERALIZED LINEAR MODELS 515

• the data are strictly bounded;

• the variance is non-constant;

• errors are non-normal.

You cannot have a proportion greater than 1 or less than 0. This has obvious implica-
tions for the kinds of functions fitted and for the distributions of residuals around these
fitted functions. For example, it makes no sense to have a linear model with a negative
slope for proportion data because there would come a point, with high levels of the x
variable, that negative proportions would be predicted. Likewise, it makes no sense to
have a linear model with a positive slope for proportion data because there would come
a point, with high levels of the x variable, that proportions greater than 1 would be
predicted.

With proportion data, if the probability of success is 0, then there will be no successes in
repeated trials, all the data will be zeros and hence the variance will be zero. Likewise, if
the probability of success is 1, then there will be as many successes as there are trials, and
again the variance will be 0. For proportion data, therefore, the variance increases with the
mean up to a maximum (when the probability of success is one half) then declines again
towards zero as the mean approaches 1. The variance–mean relationship is humped, rather
than constant as assumed in the classical tests.

The final assumption is that the errors (the differences between the data and the fitted
values estimated by the model) are normally distributed. This cannot be so in proportional
data because the data are bounded above and below: no matter how big a negative residual
might be at high predicted values, ŷ, a positive residual cannot be bigger than 1 − ŷ.
Similarly, no matter how big a positive residual might be for low predicted values ŷ, a
negative residual cannot be greater than ŷ (because you cannot have negative proportions).
This means that confidence intervals must be asymmetric whenever ŷ takes large values
(close to 1) or small values (close to 0).

All these issues (boundedness, non-constant variance, non-normal errors) are dealt with
by using a generalized linear model with a binomial error structure. It could not be simpler
to deal with this. Instead of using a linear model and writing

lm(y~x)

we use a generalized linear model and specify that the error family is binomial like this:

glm(y~x,family=binomial)

That’s all there is to it. In fact, it is even easier than that, because we don’t need to write
family=:

glm(y~x,binomial)

Count Data and Poisson Errors

Count data have a number of properties that need to be considered during modelling:

• count data are bounded below (you cannot have counts less than zero);

• variance is not constant (variance increases with the mean);

516 THE R BOOK

• errors are not normally distributed;

• the fact that the data are whole numbers (integers) affects the error distribution.

It is very simple to deal with all these issues by using a GLM. All we need to write is

glm(y~x,poisson)

and the model is fitted with a log link (to ensure that the fitted values are bounded below)
and Poisson errors (to account for the non-normality).

Deviance: Measuring the Goodness of Fit of a GLM

The fitted values produced by the model are most unlikely to match the values of the data
perfectly. The size of the discrepancy between the model and the data is a measure of the
inadequacy of the model; a small discrepancy may be tolerable, but a large one will not be.
The measure of discrepancy in a GLM to assess the goodness of fit of the model to the data
is called the deviance. Deviance is defined as −2 times the difference in log-likelihood
between the current model and a saturated model (i.e. a model that fits the data perfectly).
Because the latter does not depend on the parameters of the model, minimizing the deviance
is the same as maximizing the likelihood.

Deviance is estimated in different ways for different families within glm (Table 13.1).
Numerical examples of the calculation of deviance for different glm families are given in
Chapter 14 (Poisson errors), Chapter 15 (binomial errors), and Chapter 24 (gamma errors).
Where there is grouping structure in the data, leading to spatial or temporal pseudoreplica-
tion, you will want to use generalized mixed models (lmer) with one of these error families
(p. 590).

Table 13.1. Deviance formulae for different GLM families where y is observed data, ȳ the mean
value of y, � are the fitted values of y from the maximum likelihood model, and n is the binomial
denominator in a binomial GLM.

Family (error structure) Deviance Variance function

normal
∑

�y − ȳ�2 1
poisson 2

∑
y ln�y/�� − �y − �� �

binomial 2
∑

y ln�y/�� + �n − y� ln�n − y�/�n − ��
��n − ��

n
Gamma 2

∑
�y − ��/y − ln�y/�� �2

inverse. gaussian
∑

�y − ��2/��2y� �3

Quasi-likelihood

The precise relationship between the variance and the mean is well established for all
the GLM error families (Table 13.1). In some cases, however, we may be uneasy about
specifying the precise form of the error distribution. We may know, for example, that it is
not normal (e.g. because the variance increases with the mean), but we don’t know with
any confidence that the underlying distribution is, say, negative binomial.

GENERALIZED LINEAR MODELS 517

There is a very simple and robust alternative known as quasi-likelihood, introduced by
Wedderburn (1974), which uses only the most elementary information about the response
variable, namely the variance–mean relationship (see Taylor’s power law, p. 198). It is
extraordinary that this information alone is often sufficient to retain close to the full effi-
ciency of maximum likelihood estimators.

Suppose that we know that the response is always positive, the data are invariably skew
to the right, and the variance increases with the mean. This does not enable us to specify a
particular distribution (e.g. it does not discriminate between Poisson or negative binomial
errors), and hence we cannot use techniques like maximum likelihood or likelihood ratio
tests. Quasi-likelihood frees us from the need to specify a particular distribution, and requires
us only to specify the mean-to-variance relationship up to a proportionality constant, which
can be estimated from the data:

var�yi� ∝ ���i�	

An example of the principle at work compares quasi-likelihood with maximum likelihood
in the case of Poisson errors (full details are in McCulloch and Searle, 2001). This means
that the maximum quasi-likelihood (MQL) equations for � are

�

∑
�yi log �i − �i� = 0�

which is exactly the same as the maximum likelihood equation for the Poisson (see p. 250).
In this case, MQL and maximum likelihood give precisely the same estimates, and MQL
would therefore be fully efficient. Other cases do not work out quite as elegantly as this,
but MQL estimates are generally robust and efficient. Their great virtue is the simplicity
of the central premise that var�yi� ∝ ���i�, and the lack of the need to assume a specific
distributional form.

If we take the original GLM density function and find the derivative of the log-likelihood
with respect to the mean,

li

�i

=
li

�i

�i

�i

= yib
′��i�

ai���

1
b′′��i�

= yi − �i

var�yi�

(where the primes denote differentiation), the quasi-likelihood Q is defined as

Q�y��� =
�∫

y

y − �

�V���
d�	

Here, the denominator is the variance of y� var�y� = �V���, where � is called the scale
parameter (or the dispersion parameter) and V��� is the variance function. We need only
specify the two moments (mean � and variance �V���) and maximize Q to find the MQL
estimates of the parameters.

The scale parameter is estimated from the generalized Pearson statistic rather than from the
residual deviance (as when correcting for overdispersion with Poisson or binomial errors):

�̂ =
∑

i �yi − �̂i�/Vi��̂i��

n − p
= �2

n − p
	

For normally distributed data, the residual sum of squares SSE is chi-squared distributed.

518 THE R BOOK

Generalized Additive Models

Generalized additive models (GAMs) are like GLMs in that they can have different error
structures and different link functions to deal with count data or proportion data. What makes
them different is that the shape of the relationship between y and a continuous variable x
is not specified by some explicit functional form. Instead, non-parametric smoothers are
used to describe the relationship. This is especially useful for relationships that exhibit
complicated shapes, such as hump-shaped curves (see p. 666). The model looks just like a
GLM, except that the relationships we want to be smoothed are prefixed by s: thus, if we had
a three-variable multiple regression (with three continuous explanatory variables w, x and
z) on count data and we wanted to smooth all three explanatory variables, we would write:

model<-gam(y~s(w)+s(x)+s(z),poisson)

These are hierarchical models, so the inclusion of a high-order interaction (such as A:B:C)
necessarily implies the inclusion of all the lower-order terms marginal to it (i.e. A:B, A:C
and B:C, along with main effects for A, B and C).

Because the models are nested, the more complicated model will necessarily explain at
least as much of the variation as the simpler model (and usually more). What we want to
know is whether the extra parameters in the more complex model are justified in the sense
that they add significantly to the models explanatory power. If they do not, then parsimony
requires that we accept the simpler model.

Offsets

An offset is a component of the linear predictor that is known in advance (typically from
theory, or from a mechanistic model of the process) and, because it is known, requires no
parameter to be estimated from the data. For linear models with normal errors an offset is
redundant, since you can simply subtract the offset from the values of the response variable,
and work with the residuals instead of the y values. For GLMs, however, it is necessary
to specify the offset; this is held constant while other explanatory variables are evaluated.
Here is an example from the timber data.

The background theory is simple. We assume the logs are roughly cylindrical (i.e. that
taper is negligible between the bottom and the top of the log). Then volume, v, in relation
to girth, g, and height, h, is given by

v = g2

4�
h	

Taking logarithms gives

log�v� = log
(

1
4�

)
+ 2 log�g� + log�h�	

We would expect, therefore, that if we did a multiple linear regression of log�v� on log�h�
and log�g� we would get estimated slopes of 1.0 for log�h� and 2.0 for log�g�. Let’s see
what happens:

data <-read.delim("c:\\temp\\timber.txt")
attach(data)
names(data)

GENERALIZED LINEAR MODELS 519

[1] "volume" "girth" "height"

The girths are in centimetres but all the other data are in metres, so we convert the girths
to metres at the outset:

girth<-girth/100

Now fit the model:

model1<-glm(log(volume)~log(girth)+log(height))
summary(model1)

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) −2.89938 0.63767 −4.547 9.56e-05 ***
log(girth) 1.98267 0.07503 26.426 < 2e-16 ***
log(height) 1.11714 0.20448 5.463 7.83e-06 ***

Residual deviance: 0.18555 on 28 degrees of freedom
AIC: -62.697

The estimates are reasonably close to expectation (1.11714 rather than 1.0 for log�h� and
1.98267 rather than 2.0 for log�g�).

Now we shall use offset to specify the theoretical response of log�v� to log�h�; i.e. a
slope of 1.0 rather than the estimated 1.11714:

model2<-glm(log(volume)~log(girth)+offset(log(height)))
summary(model2)

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) −2.53419 0.01457 −174.0 <2e-16 ***
log(girth) 2.00545 0.06287 31.9 <2e-16 ***

Residual deviance: 0.18772 on 29 degrees of freedom
AIC: -64.336

Naturally the residual deviance is greater, but only by a very small amount. The AIC has
gone down from −62	697 to −64	336, so the model simplification was justified.

Let us try including the theoretical slope (2.0) for log�g� in the offset as well:

model3<-glm(log(volume)~1+offset(log(height)+2*log(girth)))
summary(model3)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) −2.53403 0.01421 −178.3 <2e-16 ***

Residual deviance: 0.18777 on 30 degrees of freedom
AIC: -66.328

Again, the residual deviance is only marginally greater, and AIC is smaller, so the simpli-
fication is justified.

What about the intercept? If our theoretical model of cylindrical logs is correct then the
intercept should be

log(1/(4*pi))

[1] -2.531024

520 THE R BOOK

This is almost exactly the same as the intercept estimated by GLM in model3, so we are
justified in putting the entire model in the offset and informing GLM not to estimate an
intercept from the data (y~-1):

model4<-glm(log(volume) ~ offset(log(1/(4*pi))+log(height)+2*log(girth))-1)
summary(model4)

No Coefficients

Residual deviance: 0.18805 on 31 degrees of freedom
AIC: -68.282

This is a rather curious model with no estimated parameters, but it has a residual deviance
of just 0.18805 (compared with model1, where all three parameters were estimated from
the data, which had a deviance of 0.18555). Because we were saving one degree of freedom
with each step in the procedure, AIC became smaller with each step, justifying all of the
model simplifications.

Residuals

After fitting a model to data, we should investigate how well the model describes the data.
In particular, we should look to see if there are any systematic trends in the goodness of
fit. For example, does the goodness of fit increase with the observation number, or is it a
function of one or more of the explanatory variables? We can work with the raw residuals:

residuals = response variable – fitted values	

With normal errors, the identity link, equal weights and the default scale factor, the raw
and standardized residuals are identical. The standardized residuals are required to correct
for the fact that with non-normal errors (like count or proportion data) we violate the
fundamental assumption that the variance is constant (p. 389) because the residuals tend to
change in size as the mean value the response variable changes.

For Poisson errors, the standardized residuals are

y − fitted values√
fitted values

	

For binomial errors they are

y − fitted values√
fitted values ×

[
1 − fitted values

binomial denominator

]

where the binomial denominator is the size of the sample from which the y successes were
drawn. For Gamma errors they are

y − fitted values
fitted values

GENERALIZED LINEAR MODELS 521

In general, we can use several kinds of standardized residuals

standardized residuals = �y − fitted values�

√
prior weight

scale parameter × variance funcion

where the prior weights are optionally specified by you to give individual data points more
or less influence (see p. 345), the scale parameter measures the degree of overdispersion
(see p. 573), and the variance function describes the relationship between the variance and
the mean (e.g. equality for a Poisson process; see Table 13.1).

Misspecified Error Structure

A common problem with real data is that the variance increases with the mean. The
assumption in previous chapters has been of normal errors with constant variance at all
values of the response variable. For continuous measurement data with non-constant errors
we can specify a generalized linear model with gamma errors. These are discussed in
Chapter 25 along with worked examples, and we need only note at this stage that they
assume a constant coefficient of variation (see Taylor’s power law, p. 198).

With count data, we often assume Poisson errors, but the data may exhibit overdispersion
(see below and p. 540), so that the variance is actually greater than the mean (rather than
equal to it, as assumed by the Poisson distribution). An important distribution for describing
aggregated data is the negative binomial. While R has no direct facility for specifying
negative binomial errors, we can use quasi-likelihood to specify the variance function in a
GLM with family = quasi (see p. 517).

Misspecified Link Function

Although each error structure has a canonical link function associated with it (see p. 514),
it is quite possible that a different link function would give a better fit for a particular
model specification. For example, in a GLM with normal errors we might try a log link or
a reciprocal link using quasi to improve the fit (for examples, see p. 513). Similarly, with
binomial errors we might try a complementary log-log link instead of the default logit link
function (see p. 572).

An alternative to changing the link function is to transform the values of the response
variable. The important point to remember here is that changing the scale of y will alter
the error structure (see p. 327). Thus, if you take logs of y and carry out regression with
normal errors, then you will be assuming that the errors in y were log normally distributed.
This may well be a sound assumption, but a bias will have been introduced if the errors
really were additive on the original scale of measurement. If, for example, theory suggests
that there is an exponential relationship between y and x,

y = aebx�

then it would be reasonable to suppose that the log of y would be linearly related to x:

ln y = ln a + bx	

522 THE R BOOK

Now suppose that the errors � in y are multiplicative with a mean of 0 and constant variance,
like this:

y = aebx�1 + ��	

Then they will also have a mean of 0 in the transformed model. But if the errors are additive,

y = aebx + ��

then the error variance in the transformed model will depend upon the expected value
of y. In a case like this, it is much better to analyse the untransformed response vari-
able and to employ the log link function, because this retains the assumption of additive
errors.

When both the error distribution and functional form of the relationship are unknown,
there is no single specific rationale for choosing any given transformation in preference to
another. The aim is pragmatic, namely to find a transformation that gives:

• constant error variance;

• approximately normal errors;

• additivity;

• a linear relationship between the response variables and the explanatory variables;

• straightforward scientific interpretation.

The choice is bound to be a compromise and, as such, is best resolved by quantitative
comparison of the deviance produced under different model forms (see Chapter 9).

Overdispersion

Overdispersion is the polite statistician’s version of Murphy’s law: if something can go
wrong, it will. Overdispersion can be a problem when working with Poisson or binomial
errors, and tends to occur because you have not measured one or more of the factors that turn
out to be important. It may also result from the underlying distribution being non-Poisson or
non-binomial. This means that the probability you are attempting to model is not constant
within each cell, but behaves like a random variable. This, in turn, means that the residual
deviance is inflated. In the worst case, all the predictor variables you have measured may
turn out to be unimportant so that you have no information at all on any of the genuinely
important predictors. In this case, the minimal adequate model is just the overall mean, and
all your ‘explanatory’ variables provide no extra information.

The techniques of dealing with overdispersion are discussed in detail when we consider
Poisson errors (p. 527) and binomial errors (p. 569). Here it is sufficient to point out that
there are two general techniques available to us:

• use F tests with an empirical scale parameter instead of chi-squared;

• use quasi-likelihood to specify a more appropriate variance function.

GENERALIZED LINEAR MODELS 523

It is important, however, to stress that these techniques introduce another level of uncertainty
into the analysis. Overdispersion happens for real, scientifically important reasons, and these
reasons may throw doubt upon our ability to interpret the experiment in an unbiased way.
It means that something we did not measure turned out to have an important impact on the
results. If we did not measure this factor, then we have no confidence that our randomization
process took care of it properly and we may have introduced an important bias into the
results.

Bootstrapping a GLM

There are two contrasting ways of using bootstrapping with statistical models:

• Fit the model lots of times by selecting cases for inclusion at random with replacement,
so that some data points are excluded and others appear more than once in any particular
model fit.

• Fit the model once and calculate the residuals and the fitted values, then shuffle the
residuals lots of times and add them to the fitted values in different permutations, fitting
the model to the many different data sets.

In both cases, you will obtain a distribution of parameter values for the model from which
you can derive confidence intervals. Here we use the timber data (a multiple regression with
two continuous explanatory variables, introduced on p. 336) to illustrate the two approaches
(see p. 284 for an introduction to the bootstrap).

library(boot)

The GLM model with its parameter estimates and standard errors is on p. 519. The hard
part of using boot is writing the sampling function correctly. It has at least two arguments:
the first must be the data on which the resampling is to be carried out (in this case, the
whole dataframe called trees), and the second must be the index (the randomized subscripts
showing which data values are to be used in a given realization; some cases will be repeated,
others will be omitted). Inside the function we create a new dataframe based on the randomly
selected indices, then fit the model to this new data set. Finally, the function should return
the coefficients of the model. Here is the ‘statistic’ function in full:

model.boot<-function(data,indices){
sub.data<-data[indices,]
model<-glm(log(volume)~log(girth)+log(height),data=sub.data)
coef(model) }

Now run the bootstrap for 2000 resamplings using the boot function:

glim.boot<-boot(trees,model.boot,R=2000)
glim.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = trees, statistic = model.boot, R = 2000)

524 THE R BOOK

Bootstrap Statistics :
original bias std. error

t1* −2.899379 −0.046089511 0.6452832
t2* 1.982665 −0.001071986 0.0603073
t3* 1.117138 0.014858487 0.2082793

There is very little bias in any of the three parameters, and the bootstrapped standard errors
are close to their parametric estimates.

The other way of bootstrapping with a model, mentioned above, is to include all the
original cases (rather than a subset of them with repeats, as we did above) but to randomize
the residuals that are associated with each case. The raw residuals are y – fitted(model)
and it is these values that are shuffled and allocated to cases at random. The model is
then refitted and the coefficients extracted. The new y values, therefore, are fitted(model)+
sample(y − fitted(model)). Here is a home-made version:

model<-glm(log(volume)~log(girth)+log(height))
yhat<-fitted(model)
residuals<- log(volume)- yhat
coefs<-numeric(6000)
coefs<-matrix(coefs,nrow=2000)

We shuffle the residuals 2000 times to get different vectors of y values:

for (i in 1:2000){
y<-yhat+sample(residuals)
boot.model<-glm(y~log(girth)+log(height))
coefs[i,]<-coef(boot.model) }

Extracting the means and standard deviations of the coefficients gives

apply(coefs,2,mean)

[1] -2.898088 1.982693 1.116724

apply(coefs,2,sd)

[1] 0.60223281 0.07231379 0.19317107

These values are close to the estimates obtained by other means earlier. Next, we use
the boot function to carry out this method. The preliminaries involve fitting the GLM
and extracting the fitted values (yhat which will be the same each time) and the residuals
(resids) which will be independently shuffled each time:

model<-glm(log(volume)~log(girth)+log(height))
yhat<-fitted(model)
resids<-resid(model)

Now make a dataframe that will be fed into the bootstrap, containing the residuals to be
shuffled, along with the two explanatory variables:

res.data<-data.frame(resids,girth,height)

Now for the only hard part: writing the ‘statistic’ function to do the work within boot.
The first argument is always the dataframe and the second is always the index i, which
controls the shuffling:

GENERALIZED LINEAR MODELS 525

bf<-function(res.data,i) {
y<-yhat+res.data[i,1]
ndv-data.frame(y,girth,height)
model<-glm(y~log(girth)+log(height),data=nd)
coef(model) }

Inside the function we create a particular vector of y values by adding the shuffled
residuals res.data[i,1] to the fitted values, then put this vector, y, along with the explanatory
variables into a new dataframe nd that will be different each time GLM the is fitted. The
function returns the three coefficients from the particular fitted model coef(model); the
coefficients are the ‘statistics’ of the bootstrap, hence the name of the function.

Finally, because we want to shuffle the residuals rather than sample them with replace-
ment, we specify sim="permutation" in the call to the boot function:

boot(res.data, bf, R=2000, sim="permutation")

DATA PERMUTATION
Call:
boot(data = res.data, statistic = bf, R = 2000, sim = "permutation")
Bootstrap Statistics :

original bias std. error
t1* −2.899379 0.014278399 0.62166875
t2* 1.982665 0.001601178 0.07064475
t3* 1.117138 −0.004586529 0.19938992

Again, the parameter values and their standard errors are very close to those obtained by
our other bootstrapping methods. Here are the confidence intervals for the three parameters,
specified by index = 1 fo the intercept, index = 2 for the slope of the regression on log�g�
and index = 3 for the slope of the regression on log�h�:

perms<- boot(res.data, bf, R=2000, sim="permutation")
boot.ci(perms,index=1)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL :
boot.ci(boot.out = perms, index = 1)

Intervals :
Level Normal Basic
95% (−4.117, −1.692) (−4.118, −1.680)
Level Percentile BCa
95% (−4.119, −1.681) (−4.302, −1.784)
Calculations and Intervals on Original Scale
There were 32 warnings (use warnings() to see them)

boot.ci(perms,index=2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL :
boot.ci(boot.out = perms, index = 2)

526 THE R BOOK

Intervals :
Level Normal Basic
95% (1.837, 2.125) (1.836, 2.124)

Level Percentile BCa
95% (1.841, 2.129) (1.827, 2.115)
Calculations and Intervals on Original Scale
There were 32 warnings (use warnings() to see them)

boot.ci(perms,index=3)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL :
boot.ci(boot.out = perms, index = 3)

Intervals :
Level Normal Basic
95% (0.730, 1.508) (0.726, 1.509)

Level Percentile BCa
95% (0.725, 1.508) (0.758, 1.566)
Calculations and Intervals on Original Scale
There were 32 warnings (use warnings() to see them)

You can see that all the intervals for the slope on log�g� include the value 2.0 and all the
intervals for the slope on log�h� include 1.0, consistent with the theoretical expectation that
the logs are cylindrical, and that the volume of usable timber can be estimated from the
length of the log and the square of its girth.

