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scientific standpoint. What is important is not the type of observation, but
whether it matches the question at hand. This is what decides whether an ob-
servation counts toward evidence in a given instance. Evidence comes from
scientifically guided empirical observations combined with background in-
formation, logic, and scientific expertise. Observations may come from both
manipulative and observational experiments. Experiments may be either
theory driven experiments, designed to test a particular theory, or poke-at-
it experiments, designed just to look at something potentially interesting.
Because all theories of global import deal with phenomena, mechanisms,
and processes at many different scales, all kinds of evidence must be used
in building and testing these theories. Scheiner’s thesis is that scientific the-
ories are built upon the consilience of the evidence. Maurer and Scheiner
express several common themes. One is the importance of consilience in sci-
entific process. Another is that evidence is evidence, whether data were col-
lected before theory was proposed or after. This idea needs to be examined
in light of the frequentist ideas of multiple testing and joint versus individ-
ual confidence intervals.
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ABSTRACT

This chapter serves as a tutorial, introducing key concepts of statistical in-
ference. We describe the language and most basic procedures of Fisherian
P-value tests, Neyman-Pearson tests, Bayesian tests, and the ratio of likeli-
hoods as measures of strength of evidence. We demonstrate each method
with an examination of a simple but important scientific question, Fisher’s
thesis of equal sex ratios. Even within the confines of this simple problem,
these methods point toward very different conclusions.

SCIENCE AND HYPOTHESES

In the seventeenth century, Francis Bacon proposed what is still regarded as
the cornerstone of science, the scientific method. He discussed the role of
proposing alternative explanations and conducting tests to choose among
them as a path to the truth. Bacon saw the practice of doing science as a
process of exclusions and affirmations, where trial and error would lead to
a conclusion. This has been the principal framework under which science
has been conducted ever since. Bacon saw science as an inductive process,
meaning that explanation moves from the particular to the more general
(Susser, 1986).
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Karl Popper in the twentieth century argued entirely differently. Popper
(1959) argued that science progresses through deduction, meaning that we
proceed from the general to the specific. Popper proposed the doctrine of
falsification, which defines what is acceptable as a scientific hypothesis: if a
statement cannot be falsified, then it is not a scientific proposition.

Both Popper and Bacon promote the idea that we learn through trial and
error. Popper’s deductive approach stipulates that, through reasoning from
logical premises, we can make predictions about how systems should be-
have, and the hallmark of a scientific statement is that it can be tested.

I do not think that we can ever seriously reduce by elimination the number of
[the] competing theories, since this number remains infinite. What we do—or
should do—is hold on, for the time being, to the most improbable of the surviv-
ing theories or, more precisely, to the one that can be most severely tested. We
tentatively “accept” this theory—but only in the sense that we select it as worthy
to be subjected to further criticism, and to the severest tests we can design. (Pop-
per, 1959, p. 419)

Popper’s views have been criticized extensively, and it is generally agreed
that confirmation of theories plays an important role (Sober, 1999; Lloyd,
1987). What is not controversial is that theories, models, and hypotheses
need to be probed to assess their correctness. This creates a need for an ob-
jective set of methodologies for assessing the validity of hypotheses. If ex-
perimental outcomes were not subject to variation and experiments were
controlled to the point where measurement error and natural variation were
negligible, then hypothesis testing would be a relatively simple endeavor.
However, as any practicing scientist knows, this is not the case; measure-
ments are not always reliable, and nature is not uniform. In this context, sci-
entists have a need for tools to assess the reliability of experimental results
and to measure the evidence that the outcome of an experiment provides to-
ward accepting or rejecting a hypothesis. To this end, statistical methods
have been developed and applied, as criteria to evaluate hypotheses in the
face of incomplete and imperfect data.

There are a variety of statistical approaches to hypothesis validation. As
background for this book, we will briefly introduce without advocacy the
ones most influential in modern science. We will relate these methods to
the general framework of scientific practice that we have outlined. In the in-
terests of concision, many practical considerations and fine details will be
glossed over.
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HYPOTHESES AND MODELS

Hypotheses play a key role in scientific endeavors. A hypothesis stems from
theory in that a good theory suggests some explicit statements that can, in
some sense, be tested (Pickett, Kolasa, and Jones, 1994; Sober, 1999). How-
ever, we must differentiate between a scientific hypothesis and a statistical
hypothesis and understand the relationship of both to statistical models.

We usually start a study or set of experiments within the context of a
body of knowledge and thought built from previous studies, observations,
and experience. From this context arises a set of questions. We try to orga-
nize these questions into a coherent order with explanatory properties. To
do this, we construct a model of how the system works. This is a scientific
model or scientific hypothesis. To be scientifically testable, this model must
be connected to observable quantities.

The expression of the scientific hypothesis in the form of a model leads
to a statistical hypothesis and a corresponding statistical model. A statistical
model is an explicit quantitative model of potential observations that in-
cludes a description of the uncertainty of those observations due to natural
variation,' to errors in measurement, or to incomplete information, such as
when observations are a sample from a larger or abstract population. A sta-
tistical hypothesis is a statement about the attributes of a statistical model
whose validity can be assessed by comparison with real observations. If a
statistical model is found to be inadequate to describe the data, the implica-
tion is that the scientific model it represents is also inadequate. Thus, a sci-
entist may compare scientific hypotheszs through the analysis of statistical
models and data. Figure 1.1 shows these relationships diagrammatically. It
is important to realize that, in this book, when we talk of testing hypothe-
ses and evidence, we are referring to the statistical hypotheses, and model
selection refers to the selection of statistical models. The scientific inference
derived from any statistical analysis can be no better than the adequacy of
the models employed.

In the next section, we demonstrate the process of transformation of a
scientific hypothesis into a statistical hypothesis with a simple example (see
Pickett, Kolasa, and Jones, 1994, for a more complete discussion of transla-
tion and transformation in ecological theory).

1. Natural variation occurs when entities within a class are not homogeneous, i.e., when
the differences among entities are not extreme enough to class them separately but cause
measurements of an attribute to vary within the class.
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FIGURE 1.1 The relationships between statistical model and scientific explanation: The solid
lines are direct translation paths, while the dotted lines are transformation paths. In this
model of science, we translate an existing body of knowledge into an explanation and derive
hypotheses from the explanations. An explanation is transformed into a statistical model,
and hypotheses are generated and tested from the model.

SIMPLE BIOLOGICAL QUESTION

Fisher (1958, 158-60) showed that, in a sexually reproducing population
with random mating and equal parental investment in the sexes, natural se-
lection should favor equal proportions of male and female offspring. When
these assumptions hold, most studies have shown that there are indeed
equal proportions of the sexes in natural populations.

This problem of the sex proportions gives us a framework to demonstrate
some key concepts in statistics. What does the statement “the ratio of in-
vestment between males and females should be equal for sexually repro-
ducing species” really mean? Certainly, one does not expect that a litter of
3 offspring should have 1.5 males and 1.5 females. Instead, what is being
specified is the probability that a given offspring will be male or female is
equal for the entire population. If we combine this idea with the ancillary
assumption that the sexes of individuals within a litter are independent,
then a statistical model describing the proportion of sexes is that the num-
ber of males in a litter of a given size is binomially distributed.?

2. The binomial distribution arises as the sum of independent trials where each trial can
be either a “success” or a “failure” (also known as Bernoulli trials). If we imagine a sequence
of independent coin flips with probability 6 of landing heads, if we flip the coin n times, then
the probability of x successes (defined in this case as landing heads) is (2)9“(1 =0) 4 for
x=1,2,...,n The term (:) is the binomial coefficient, which counts the number of pos-
sible sequences of n events with x successes.
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A statistical hypothesis is a statement about the parameters of a distri
bution. If 6 is the probability of an offspring being born male, then 6 = 5,
0 =.7,0> 5 and 0 # .5 are possible statistical hypotheses. The scientific
hypothesis of equal parental investment now corresponds to the statistical
hypothesis 6 = .5.

To validate or test a statistical hypothesis corresponding to a scientific hy-
pothesis, an investigator must gather real-world data. We utilize a classic
data set from the literature on sex ratios in pig litters. The data comes from
pig births registered in the British National Duroc-Jersey Pig Record, vol. 67
(Parks, 1932). There are 7929 male and 8304 female births recorded for a to-
tal of 16233 births.

How can one investigate whether these data are consistent with Fisher’s
scientific hypothesis of a 50% proportion of males? In the following sec-
tions, we will use these data to illustrate the mechanics of several different
statistical approaches to this problem that have been very influential in sci-
ence. However, before we can do this, we need to introduce a few critical sta-
tistical concepts.

THE SAMPLE SPACE, RANDOM VARIABLES,
AND THE PARAMETER SPACE

A basic concept essential for understanding statistical inference is the no-
tion of a sample space. The sample space S is the space of all possible
outcomes that can occur when an experiment/observation is made. As a
simple demonstration, consider our sex proportion example. For a family
with three offspring, there are eight (2’ = 8) possible birth sequences. Thus,
the sample space is: S = {{F, F, F}, {F, F, M}, {F, M, F}, {M, F, F}, {F, M, M},
{M, F, M}, {M, M, F}, {M, M, M}}, where F indicates a female offspring and
M a male.

However, our interest is in the proportion of males (or females) in the
population, meaning that order is not important. Let X be the number of
male piglets in a litter. Then X ({F, M, F}) = 1 and X ({M, M, F}) = 2, and
so on. Corresponding to each possible litter in our sample space, we can as-
sign a specific number to X. Such an X is called a random variable. For the
case of a family size of three, the possible values of X are 0, 1, 2, or 3. The
set of possible values of X is often called the range or support of the random
variable.

Assuming that the probability of an offspring being male (or female) is
one-half, 6 = % sexes of littermates are independent, and 6 is constant for
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all litters, then the probability of any specific litter of 3 being entirely com-
posed of males is 5 X 5 X 5 = ;. Because only one birth sequence can oc-
cur at a time, the probability that the random variable X takes on a specific
value is equal to the sum of the probabilities of all birth sequences with that
number of males. Thus, as only a single birth sequence will produce all fe-
males, P(X = 0) = g, similarly only a single sequence will produce all males
and P(X = 3) = 5. However, there are three possible sequences with one
male and also three sequences with two males; thus P(X = 1) = 3 and
P(X = 2) = ;. The set of probabilities for each possible value of a random
variable is known as the probability distribution of the random variable. If
the random variable is discrete, as in this example, we refer to the distribu-
tion as a probability mass function (pmf) and if the random variable has
continuous support we refer to the distribution as a probability density
function (pdf).

The probability 0 of a piglet being male need not be 1/2. It could con-
ceivably be any number between 0 and 1. For a fixed value of 6, the proba-
bility distribution is given by {(1 — 6)?, 3(1 — 6 )%, 3(1 — 6)6?, 6%}. We can
further generalize this to the probability distribution for any 6 and any lit-
ter size as

{(D(l —~ 6)"(0)", (T)(l - 0)"0)", ..., (;‘)(1 - g)o(e)n}‘

This is called the binomial distribution with parameters 6 and n and is de-
noted by Bin(n, ). Often the number of observations, n, is considered
known and fixed, and is thus not a parameter.

Finally, the parameter space O is defined as the collection of all possible
values that the parameter 6 could conceivably take. In this case where X is
a random variable from a binomial distribution with parameter 6, where
0<0<1,then Oistheset{f:0<0 <1}

With this background in hand, we proceed to the problem of testing sta-
tistical hypotheses.

THE MECHANICS OF TESTING STATISTICAL HYPOTHESES

There are several basic approaches to testing statistical hypotheses. In this
section, we give a gentle introduction to those approaches and couch them
in the framework we have presented so far. We also give examples of how
these approaches work using our sex proportions example. The basic ap-
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proaches that we discuss are (1) Fisher’s P-value-based tests, (2) Neyman-
Pearson tests, and (3) Bayesian tests.

Fisher’s P-Value Tests

Fisherian significance testing focuses on quantifying the support that can
be found in the data for a single hypothesis (Fisher, 1935). The question
asked is “If the hypothesis under consideration were true, in replicate ex-
periments, what would be the frequency of observing these data or more ex-
treme data?” The data, or the data summary, are determined extreme in terrms
of the probability of observing the data summary under the considered hy-
pothesis.> The hypothesis is considered unsupported if this frequency or
probability is low. This probability is presented as a measure of evidence for
or against the single hypothesis under consideration (Cox, 1977).

We proceed with a Fisherian test of the equal sexual proportions hy-
pothesis using the data given above. The hypothesis under consideration is
that the fraction of males is .5. Under the assumed binomial distribution, the
probability of observing 7,929 males is .0000823. Any observation with
fewer than 7,930 males or more than 8,303 males will have a probability less
than or equal to .0000823 and will thus be considered an extreme event
(Royall, 1997, p. 67). Summing the probability of all extreme events, we find
that probability of observing an event as extreme as or more extreme than
the observed 7929 males is .003331. Since this probability is quite small,
this unusual result is taken as evidence against the statistical hypothesis that
piglet births are distributed as independent Bernoulli trials with 6 = .5.

Neyman-Pearson Tests

The Neyman-Pearson approach to inference is constructed as a decision rule
for deciding between two alternative hypotheses. One of these hypotheses
is commonly given primacy in that it represents the status quo. This is
called the null hypothesis and is generally labeled H,. The other is called the
alternate hypothesis and is commonly labeled H;. The Neyman-Pearson ap-
proach divides the set of all possible outcomes, the sample space, into two
regions, one called the acceptance region and the other the rejection region.
The outcome of the test depends on which region the observed data fall into.
If the data are in the acceptance region, the decision is to accept the null hy-

3. The definition of extreme is not consistent in the statistical literature. Sometimes, ex-
tremeness is defined in terms of the value of the test statistic (e.g., Cox and Hinkley, 1974,
66). However, such a definition can present problems when considering distributions that are
asymmetric or multimodal.
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TABLE 1.1 The table shows the different outcomes of
actions in relation to the “true” state of nature.

H, true H, true
reject H, type I error correct decision
reject H, correct decision type Il error

pothesis as true.* If, on the other hand, data fall in the rejection region, the
decision is to reject the null hypothesis and accept the alternative hypothe-
sis as true.

However, even if applied correctly, this process is bound to make some
erroneous decisions in the long run. There are two kinds of errors that can
be made in this process. First, if the null hypothesis were true, the investi-
gator could mistakenly conclude that the null hypothesis should be rejected.
Second, if the null hypothesis were false, the investigator could mistakenly
conclude that the null hypothesis should be accepted. These two errors have
been named type I and type II errors respectively. Table 1.1 illustrates the
four possible outcomes in a testing situation.

The choice of how to split the sample space is made so as to control these
two kinds of errors. The split is designed to satisfy two constraints. The first
constraint is that the probability of making a type I error should be, at most,
some predetermined but arbitrary value. This value is known as the size of
the test and is typically denoted by a. Values often chosen for « are .05 or
.01. There may be more than one way. to partition S so that the test has the
specified size . When this is the case, then the partition of size a that min-
imizes the probability of a type II error is selected. The probability of type I1
error is designated as 8. The probabilities a and 8 are conceived as the fre-
quencies of each kind of error occurring if the experiment were to be repli-
cated a large number of times.

We now apply the Neyman-Pearson approach to testing Fisher's theory of
equal sex proportions. We will consider two different formulations of the al-
ternative statistical hypotheses:

1. The first case compares two simple hypotheses about 6. A simple hy-
pothesis completely specifies the distribution of the random variable.

4. Sometimes, instead of talking about accepting H,, we speak in terms of failure to reject
Hy. This is because the null hypothesis is often set up as an overly precise specific model that
is almost surely unbelievable (Lindgren, 1976, p. 278).
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2. The second case compares a simple hypothesis with a composite hy-
pothesis. A hypothesis is composite if it is not simple, i.e., it does not
uniquely specify the distribution of the random variable.

First, we consider two simple hypotheses: H,: 6 = .5 against H;: § = .45,
where 6 is the true unobserved population sex proportion. Under the Ney-
man-Pearson paradigm, we need to choose between H, and H,, as to which
is the correct specification of the parameter. The first step is to fix the prob-
ability of type I error, say, at « = .05. Next, we need to define the sample
space. The sample space for this problem is the set of all possible values
for the number of male piglets in the study, that is {0, 1, ..., 16233}. The
Neyman-Pearson lemma (Casella and Berger, 1990) provides an optimal par-
tition of this sample space so that the probability of type I error is equal
to a (.05) and the probability of type II error is minimized. For this prob-
lem, the acceptance region® can be found (Casella and Berger, 1990) to be
{8012, 8013, ..., 16233} and the rejection region to be {0, 1, ..., 8011}. The
observed number of male piglets is 7929. This is in the rejection region;
thus, we reject Hy, @ = .5 and accept H,: 6 = .45 as true.

Many times in practice, we do not wish to be constrained to a simple hy-
pothesis but, instead, wish to test H, against all possible alternatives. This
is called testing a composite hypothesis. A composite hypothesis is not
represented by a single distribution such as Bin (16233, .5), but instead
is represented by a collection of distributions e.g., {Bin (16233, 6): 6 # _5}.
The Neyman-Pearson lemma does not apply to the testing of composite
hypotheses. However, a reasonable test can be constructed using similar
ideas (see Casella and Berger, 1990, for details). Now the acceptance region
is the set {7992, .. ., 8241} and the rejection region is the union of the sets
{0,1,...,7991} and {8242, ..., 16233}. Again, H, is rejected, but in this case
we conclude only that 6 is something other than .5.

Bayesian Tests

The previous two approaches, Fisherian P-values and Neyman-Pearson test-
ing, both construct rules for decision making. These rules are designed to
optimize the decision-making process over many repeated identical experi-

5. Strictly speaking, for the discrete distributions, it is generally not possible to find an ac-
ceptance region that has size exactly equal to a. One could use what is called a randomized
test. However, for the sake of simplicity, we ignore this subtlety and provide an approximate
acceptance region.



1

12 Chapter 1

ments. Bayesians reject the concept of optimizing the decision process for
hypothetically repeated experiments. They believe that the analysis and de-
cisions should be made only on the basis of the observed data and not on the
basis of what we could have observed had we repeated the experiment over
and over again. The Bayesian framework is not formulated in terms of deci-
sion, but in terms of belief. Before any data are observed, the scientist quan
tifies his or her belief about competing hypotheses in terms of probabilities.
If the scientist believes strongly that a hypothesis is true, then that hypoth-
esis is given a high probability.

The belief that the scientist has in the hypotheses before observing the
data is termed the prior probability distribution. The Bayesian analysis is
a formulation of the influence the data have on prior belief. The belief af-
ter the data are taken into consideration is called the posterior probability
distribution. Once data have been observed, Bayesian scientists” beliefs are
changed according to the following rule.

Let P(H,) and P(H,) be the prior beliefs in H, and H,, and let X be the ob-
served data. To be considered a proper probability distribution one must im-
pose the following constraints: 0 = P(Hy) = 1,0 = P(H,) = 1, and P(H,) +
P(H;) = 1. Then the probability of H; after the data X are observed, the pos
terior probability, is given as

P(Hy) P(X|Hy)
P(X|Ho)P(H,) + P(X|H,)P(H,)

P(HylX) =

Similarly, the posterior probability of H, is given as

P(H,)P(X|H,)
P(X|Ho) P(Ho) + P(X|H,)P(H,)

P(H,|X) =

Notice that these posterior probabilities satisfy the constraints given above
and thus constitute a probability distribution. Notice also that the posterior
probabilities are contingent on the prior probability distribution, and thus
may vary somewhat from researcher to researcher.

We now illustrate the Bayesian approach using our sex proportion ex-
ample. Consider the same two simple hypotheses about 6 that we used in
the Neyman- Pearson example. Hy: = .5 and H,: 6 = .45. First, we need to
specify the prior distribution. If we strongly believe that the true sex pro-
portion is .5, a possible specification of the prior distribution might be
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P(H,) = 5 and P(H,) = }. This distribution represents a stronger belief in #,
than in H,. How do we change our belief in the light of the observation of
7929 males in 16233 piglets? Using the above formula,

P(HylX) =
2 16233 7929 16233—7929
5( 7929 >(’5) (%)
~ 1
2 /16233 1/16233
- 5 7929 5 16233—7929 + = 2 7929 16233—7929
3 ( 7929 >( )(5) 3\ 7929 J(#9)77(55)

Similar calculations show that P(H,|X) is approximately 0. Thus, after ob-
serving these data, our belief in H, is vastly strengthened.

PRODUCTS OF TEST PROCEDURES

The basic statistical paradigms presented above give very different prod-
ucts. Fisherian P-values evaluate a single hypothesis, not in relation to an al-
ternative. The Neyman-Pearson procedure is designed to dictate a decision
between two hypotheses: one is rejected and the other is accepted. Bayesian
approaches result in a changed degree of belief after viewing the data.

Although these are the paradigms under which the majority of statistical
analysis in science has always been conducted, there has been a history of
discomfort with all of these approaches. The Neyman-Pearson paradigm
does not provide a measure of the strength of evidence; the Fisher Pvalue
paradigm purportedly has a measure for the strength of evidence, but only
considers a single hypothesis; and the Bayesian posterior includes subjec-
tive elements due to the choice of prior.

AN EVIDENTIAL PARADIGM

A series of statisticians, philosophers, and scientists (Barnard, 1949; Hack-
ing, 1965; Edwards, 1972; Royall, 1997) have felt that an explicit concept of
the comparative strength of evidence is essential. To date, the primary sta-
tistical tool used in quantifying the strength evidence has been the likeli-
hood ratio. We now explain the concepts of likelihood and likelihood ratio
and illustrate their use in measuring the strength of evidence in the sex pro-
portions example.
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LIKELIHOOD, LIKELIHOOD RATIO, AND STRENGTH OF EVIDENCE

Fisher developed the concept of likelihood in 1921. The likelihood is con-
ceived of as a measure of support for a value of 6 given the data x. The like-
lihood function is proportional to the probability of observing the data un-
der particular values of the parameters and is written L(6; x). Let X be a
random variable with probability density function f(x; 8), where 6 is a pa-
rameter or vector of parameters and x is a vector of observations. The likeli-
hood for the parameter 6 is given by L(; x) o< f(x; 6). The likelihood might
be seen as equivalent to the pdf or pmn of X, but there is a critical difference
in what is considered fixed. When utilizing a pdf or pmf, 6 is considered
fixed and the pdf or pmf a function of x, but when utilizing a likelihood, x
is considered fixed and the likelihood considered a function of 6 (Casella
and Berger, 1990). It is clear that L(6; x) is not a probability because, in gen-
eral, L(0; x) integrated over all values of § does not necessarily equal one.

Consider two hypotheses, Hy, = 0,, H, = 0,; the likelihood ratio for these
two hypotheses is defined as L(0,; x)/L(0;; x).

lan Hacking (1965) suggested that likelihood ratios greater than 1 indi-
cate support for Hy while ratios less than 1 indicate support for H,. If the
ratio is exactly equal to 1, neither hypothesis is supported over the other.
Further, the magnitude of the likelihood ratio quantifies the strength of ev-
idence for H, over H,.

We return to our example of sex ratios in pigs. The competing hypothe-
ses are Hy: 0 = .5 and H,: 6 = .45. The ratio of likelihoods is

L(HolX) _ (Z).SX(.S)n~x
L(H,(|X) C)ASX(.SS)H_X

where x is the number of males observed. The ratio is >e**, indicating a very
high degree of support for H; in relation to H,. We can interpret this result
as meaning that Hj is over a quintillion times better supported than H,, due
to the size of the ratio.

INTO THE FRAY

We have described fundamental statistical concepts of Neyman-Pearson test-
ing, Fisherian testing based on P-values, and Bayesian inference. We have
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also introduced the idea of the likelihood function and the ratio of likeli

hoods as a possible measure of the strength of evidence for one hypothesis
over another. Notice that in our examples Fisherian P values and Neyman

Pearson testing reject H,, while the Bayesian test and the ratio of likelihoods
strongly support H; over H,. These inference procedures do not necessarily
lead to the same conclusions. The rest of this volume largely debates the re

lationship between these approaches to statistical inference and what con-
stitute appropriate measures of evidence in science.

APPENDIX

In section 1.3, we first introduced the Duroc-Jersey pig data, which we used
as an example to show how different approaches to inference work. We col

lapsed the data over litter size to keep our examples simple. The data are far
more complex than what we used for our analysis, and a more complete rep-
resentation of the data is given in table 1.2. The reader will note that the val-
ues tend to center around an equal sex ratio for all litter sizes, but that there
is a great deal of heterogeneity in the responses, which is common when the
values are discrete and counts not very large. Regardless of which statistical
approach is adopted, sophisticated techniques are available for dealing with

TABLE 1.2 The complete Duroc pig data from Parkes (1932). The table shows the frequency
of each litter category defined by the size of the litter and the number of male piglets in the
litter. For instance, the entry in the upper left hand corner of the table indicates that there are
two litters of size two with no males. Where the number of males indicated by the row is
greater than the litter size indicated by the column, the cell is empty.

Number o )
of Size of Litter
Males 2 3 4 5 6 7 8 9 10 4l 12 13 14
0 2 4 It 2 3 0 1 0 0 0 0 0 (0]
1 5 7 14 20 16 21 8 2 7 0 0 (8]
2 2 9 23 41 53 63 3 23 8 2 i 1 (8]
3 4 14 35 78 117 81 72 19 15 8 0 (0]
4 1 14 59 104 162 101 79 15 4 2 (0]
5 4 18 46 77 83 82 33 ) 1 (0]
6 0 2 30 46 48 13 18 9 1
7 7 5 12 24 12 il 4 -5
8 7 10 8 15 2 1
9 0 0 1 4 0 18]
10 0 1 0 0 O
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the inherent problems in the data. And in fact, Parks (1932) points out some
of the pitfalls of using a binomial test on these data due to the problems of
overdispersion introduced by ratios of whole numbers.
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2 Models of Scientific Inquiry and
Statistical Practice: Implications for
the Structure of Scientific Knowledge

Brian A. Maurer

ABSTRACT

Practitioners of science often go about their craft in a manner that is unique
to each discipline. Statistics must serve different purposes defined by the
nature of the subject matter and maturity of a given discipline. Ecology op-
erates under a mixture of techniques, philosophies, and goals. I examine
two complementary models of scientific inquiry within ecology, each of
which serves unique functions in the discovery of ecological knowledge. In-
ductive science begins with the accumulation of observations with the in-
tent of discovering patterns. Explanations for patterns are generated post hoc.
Repeatable patterns are sought in order to develop generalizations and sub-
sequently theories. For this kind of science, parameter estimation is more
useful than formal hypothesis testing. When used, null hypotheses focus on
distinguishing “real” patterns from “random” ones. Bayesian statistics are
helpful because information on existing patterns can be used to inform es-
timation procedures seeking to detect additional patterns. Deductive science
begins with proposed explanations deduced from formal theories. From
these, specific predictions are made about patterns that might arise from
data. Data are used to design “strong tests” for the predictions, with the in-
tention of exposing possible errors in a theory. Hypothetico-deductive ex-
perimental designs are used to maximize the chance of detecting theoreti-
cal flaws by falsification of predictions. Statistical hypothesis tests with a
priori choice of significance levels are used. Bayesian statistics can obfuscate
formal tests by including information not specifically contained within the
experiment itself. These two kinds of science occur in different situations:
generally, inductive science is more useful when the field of inquiry or the
investigator is “young,” while deductive science emerges as the better alter-
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