
Uma Introdução à Lógica da Modelagem Estatística

Inferência clássica x modelagem

PG-Ecologia-USP

Paulo Inácio Prado & João L. F. Batista

PG-Ecologia-USP

Paulo Inácio Prado & João L. F. Batista

Modelos estatísticos em ecologia e recursos naturais

Modelos estatísticos em ecologia e recursos naturais

Testes de Significância

Section 8.1 Testing for Difference between Two Means

123

EXAMPLE 8.1 A two-sample t test for the two-tailed hypotheses, H_0 : $\mu_1 = \mu_2$ and H_A : $\mu_1 \neq \mu_2$ (which could also be stated as H_0 : $\mu_1 - \mu_2 = 0$ and H_A : $\mu_1 - \mu_2 \neq 0$). The data are human blood-clotting times (in minutes) of individuals given one of two different drugs.

$$H_0$$
: $\mu_1 = \mu_2$
 H_A : $\mu_1 \neq \mu_2$

Given drug B	Given drug G	
8.8	9.9	
8.4	9.0	
7.9	11.1	
8.7	9.6	
9.1	8.7	
9.6	10.4	
	9.5	
$n_1 = 6$	$n_2 = 7$	
$v_1 = 5$	$v_2 = 6$	
$\bar{X}_1 = 8.75 \text{ min}$	$\bar{X}_2 = 9.74 \text{ min}$	
$SS_1=1.6950min^2$	$SS_2 = 4.0171 \text{ min}^2$	Zar (1999) Biostatistical Analysis
	8.8 8.4 7.9 8.7 9.1 9.6 $n_1 = 6$ $v_1 = 5$ $\bar{X}_1 = 8.75 \text{ min}$	8.8 9.9 8.4 9.0 7.9 11.1 8.7 9.6 9.1 8.7 9.6 10.4 9.5 $n_1 = 6$ $n_2 = 7$ $v_1 = 5$ $v_2 = 6$ $\bar{X}_1 = 8.75 \text{ min}$ $\bar{X}_2 = 9.74 \text{ min}$

Testes de Significância

Given drug B	Given drug G	
8.8	9.9	
8.4	9.0	
7.9	11.1	
8.7	9.6	
9.1	8.7	
9.6	10.4	
	9.5	
$n_1 = 6$	$n_2 = 7$	
$\bar{X}_1 = 8.75 \text{ min}$	$\bar{X}_2 = 9.74 \text{ min}$	

Zar (1999) Biostatistical Analysis

t de Student

$$t = \frac{\bar{X} - \bar{Y}}{s_{e_{XY}}}$$

$$e_{xy} = s_{XY} \sqrt{\frac{1}{n_Y} + \frac{1}{n_Y}}$$

$$s_{e_{xy}} = s_{xy} \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}$$
 $s_{xy} = \sqrt{\frac{(n_x - 1)s_x^2 + (n_y - 1)s_y^2}{n_x + n_y - 2}}$

PG-Ecologia-USP

Paulo Inácio Prado & João L. F. Batista

PG-Ecologia-USP

Paulo Inácio Prado & João L. F. Batista

Modelos estatísticos em ecologia e recursos naturais

Modelos estatísticos em ecologia e recursos naturais

Cálculo

- > X <- c(8.8, 8.4, 7.9, 8.7, 9.1, 9.6)
- > Y <- c(9.9, 9, 11.1, 9.6, 8.7, 10.4, 9.5)
- > ## sample sizes
- > n.X <- length(X)
- > n.Y <- length(Y)
- > ## Pooled sd
- > s.XY <- sqrt(((n.X-1)*var(X) +
- + (n.Y-1)*var(Y)) / (n.X+n.Y-2))
- > ## Standard error of differences
- > se.XY <- s.XY * sqrt(1/n.X + 1/n.Y)

Cálculo

"Estatística" t de Student

Distribuição de t sob hipótese nula

Região de Rejeição

- > #t
- > (t.XY <- (mean(X) mean(Y)) / se.XY)
- [1] -2.47649
- > ## Degrees of freedom
- > (df.XY <- n.X + n.Y 2)
- [1] 11
- > ## Bicaudal test
- > pt(q = t.XY, df = df.XY) * 2
- [1] 0.0307649

Cálculo

> t.test(X, Y, var.equal=TRUE)

Two Sample t-test

data: X and Y

t = -2.4765, df = 11, p-value = 0.03076

alternative hypothesis: true difference in means is not equal

to 0

95 percent confidence interval:

-1.8752609 -0.1104534 sample estimates:

mean of x mean of y

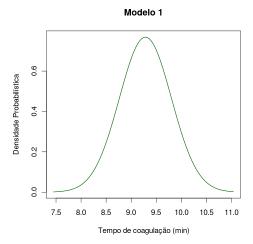
Paulo Inácio Prado & João L. F. Batista

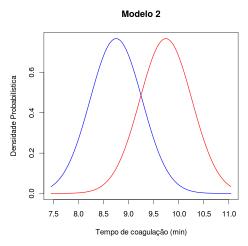
Quais os modelos implícitos no Teste t?

A distribuição de t Student é a distribuição de probabilidade da estatística t sob a hipótese nula de que as duas médias amostrais vêm da mesma distribuição se:

- 1 A observações que compõem as amostras são independentes;
- 2 As amostras foram tomadas de distribuições Gaussianas com igual variância*.

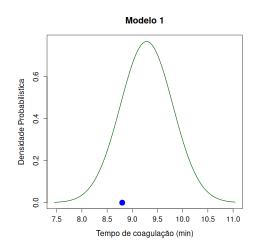
* Há uma aproximação para variâncias diferentes

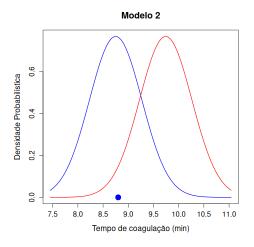

PG-Ecologia-USP

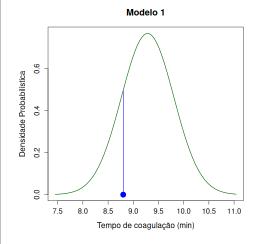

Paulo Inácio Prado & João L. F. Batista

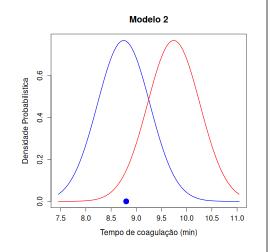
Modelos estatísticos em ecologia e recursos naturais

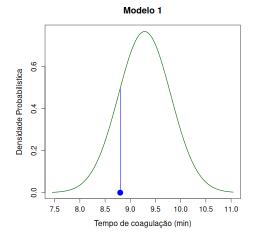
Modelos estatísticos em ecologia e recursos naturais

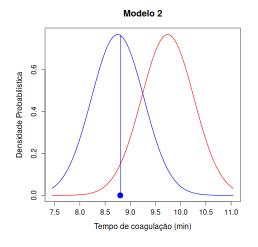

Modelos implícitos no Teste t




Parâmetros: μ , σ Parâmetros: μ_1 , μ_2 , σ


Modelos estatísticos atribuem probabilidades a observações




Probabilidade atribuída a uma observação por cada modelo

Probabilidade atribuída a uma observação por cada modelo

PG-Ecologia-USP

Paulo Inácio Prado & João L. F. Batista

PG-Ecologia-USP

Paulo Inácio Prado & João L. F. Batista

Modelos estatísticos em ecologia e recursos naturais

Modelos estatísticos em ecologia e recursos naturais

Lei da Verossimilhança (Um Enunciado Informal)

Dado que:

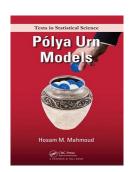
- Há mais de um modelo para um conjunto de dados.
- Cada modelo atribui uma probabilidade diferente aos dados.

Então:

O MODELOS MAIS PLAUSÍVEL SERÁ AQUELE QUE ATRIBUIR A MAIOR PROBABILIDADE AOS DADOS.

O que é Verossimilhança?

Observação:


N de bolas brancas em um sorteio Hipóteses (ou modelos)

H₁: Há apenas bolas brancas na urna.

H₂: Metade das bolas da urna são brancas e metade são azuis.

Problema:

Identificar a hipótese mais plausível, dada a observação.

Força da Evidência de uma observação

- Um sorteio de uma bola.
- A bola sorteada é branca.

$$P(x=1|H_1)=1,0$$

 $P(x=1|H_2)=0,5$

 H_1 é $\frac{1.0}{0.5}$ = 2 vezes mais plausível que H_2

E para observações múltiplas?

- Dois sorteios de uma bola cada.
- Em ambos tivemos uma bola branca.

$$P(x_1=1, x_2=1|H_1)=1,0\times1,0=1,0$$

 $P(x_1=1, x_2=1|H_2)=0,5\times0,5=0,25$

$$P(x_1=1, x_2=1|H_2)=0.5\times0.5=0.25$$

 H_1 é $\frac{1.0}{0.25}$ = 4 vezes mais plausível que H_2

PG-Ecologia-USP

Paulo Inácio Prado & João L. F. Batista

PG-Ecologia-USP

Paulo Inácio Prado & João L. F. Batista

Modelos estatísticos em ecologia e recursos naturais

Modelos estatísticos em ecologia e recursos naturais

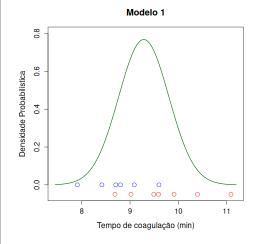
Função de Verossimilhança

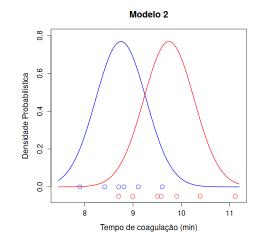
Qualquer função proporcional ao produto das probabilidades que um modelo atribui a cada valor dos dados*

$$L \propto P(x_1|H) \times P(x_2|H) \times \dots P(x_n|H)$$

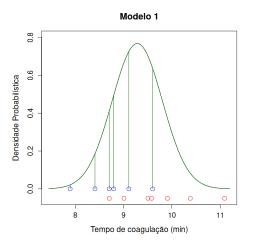
Função de Log-Verossimilhança

Logaritmo de uma função de verossimilhança, ou


qualquer função proporcional à soma dos logaritmos das probabilidades que um modelo atribui a cada valor dos dados*


$$LL \propto \ln P(x_1|H) + \ln P(x_2|H) + ... \ln P(x_n|H)$$

^{*} Sob a premissa de que os dados são realizações independentes de um mesmo processo.

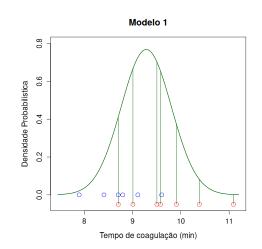

^{*} Sob a premissa de que os dados são realizações independentes de um mesmo processo.

Várias observações, dois modelos

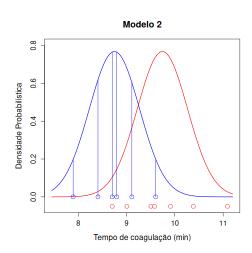
Várias observações, modelo 1

PG-Ecologia-USP

Paulo Inácio Prado & João L. F. Batista

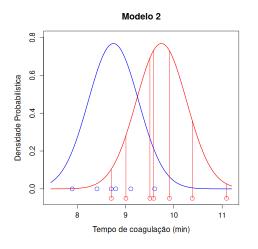

PG-Ecologia-USP

Paulo Inácio Prado & João L. F. Batista

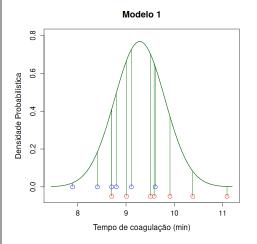

Modelos estatísticos em ecologia e recursos naturais

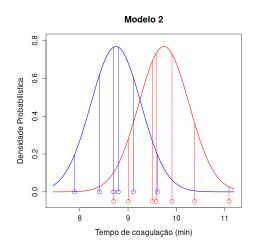
Modelos estatísticos em ecologia e recursos naturais

Várias observações, modelo 1



Várias observações, modelo 2




PG-Ecologia-USP

Várias observações, modelo 2

Várias observações, dois modelos

Log-Verossimilhança = -19,9

Log-Verossimilhança = -14,1

PG-Ecologia-USP

Paulo Inácio Prado & João L. F. Batista

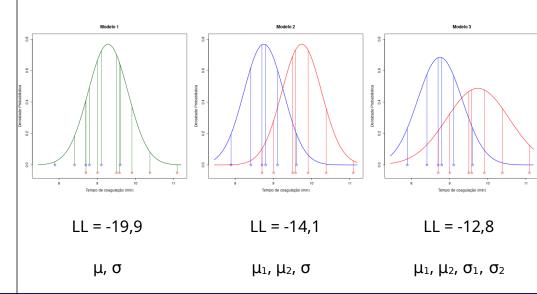
PG-Ecologia-USP

Paulo Inácio Prado & João L. F. Batista

Modelos estatísticos em ecologia e recursos naturais

Modelos estatísticos em ecologia e recursos naturais

Uma medida de plausibilidade


SE:

- 1. Temos dados que podem ser explicados por mais de uma hipótese, e
- 2. Cada hipótese é um modelo que atribui alguma probabilidade aos dados

ENTÃO:

Podemos expressar o quão plausível uma hipótese é em relação às outras por meio de uma função, chamada verossimilhança (ou pelo seu logaritmo, chamada função de log-verossimilhança)..

Várias observações, três modelos

Parcimônia!

MODELO	Parâmetros	LL
H1	μ, σ	-19,9
H2	μ_1 , μ_2 , σ	-14,1
Н3	μ_1 , μ_2 , σ_1 , σ_2	-12,8

AIC

AIC = $-2 \times Log$ -Verossimilhança $+2 \times n$ de parâmetros

MODELO	Parâmetros	LL	AIC
H1	μ, σ	-19,9	43,8
H2	μ_1 , μ_2 , σ	-14,1	34,2
H3	$\mu_1, \mu_2, \sigma_1, \sigma_2$	-12,8	33,6

Hirotsugu Akaike (1927-2011)

PG-Ecologia-USP

Paulo Inácio Prado & João L. F. Batista

PG-Ecologia-USP

Paulo Inácio Prado & João L. F. Batista

Modelos estatísticos em ecologia e recursos naturais

Modelos estatísticos em ecologia e recursos naturais

Os 3 passos da Inferência Baseada em Modelos

- 1. **ESPECIFICAÇÃO**: defina os modelos concorrentes.
- 2. **ESTIMAÇÃO**: busque o melhor ajuste de cada modelo (combinação de parâmetros que maximiza a verossimilhança).
- 3. **SELEÇÃO**: Fique com o melhor modelo (com maior verossimilhança).

RECAPITULANDO

- Modelos probabilísticos descrevem a probabilidade de que seu ensaio tenha um certo resultado.
- Uma vez observado o resultado de um ensaio, encontramos a verossimilhança máxima de cada modelo proposto.
- Usamos a verossimilhança, ou uma função dela, para identificar o(s) modelo(s) mais plausível(is).

PG-Ecologia-USP

Para saber mais

Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical-Theoretic Approach, 2nd ed. New York, Springer-Verlag.

Bolker, B. (2008). Ecological Models and Data in R. Princeton, Princeton University Press.

Hilborn, R. & Mangel, M. (1997). The Ecological Detective - Confronting Models with Data. Princeton, Princeton University Press.

Royall, R. M. (2000). Statistical Evidence: A Likelihood Paradigm. London, Chapman and Hall.

Nossa cadeia de dependências

- → Seleção de modelos
 - →Definição dos modelos concorrentes
 - → Conhecer diferentes classes de modelos
 - →Ajuste de cada modelo aos dados
 - →Função de verossimilhança de cada modelo
 - →Distribuições de probabilidade assumidas para cada modelo

PG-Ecologia-USP

Paulo Inácio Prado & João L. F. Batista

PG-Ecologia-USP

Paulo Inácio Prado & João L. F. Batista

Modelos estatísticos em ecologia e recursos naturais

Modelos estatísticos em ecologia e recursos naturais

Nosso roteiro

- 1) Introdução (esta aula)
- 2) Distribuições de probabilidade
 - a) Contínuas
 - b) Discretas
- 3) Verossimilhança
- 4) Modelos estatísticos
 - a) Parâmetros constantes
 - b) Gaussianos
 - c) Não Gaussianos
- 5) Seleção de modelos

CONCEITOS-CHAVE

- **Ensaios**: procedimentos de geração de dados (e.g. experimentos ou amostragens).
- Cenário: situação na qual podem ser conduzidos ensaios.
- Cenário estocástico: aquele em que ensaios têm mais de um resultado possível, cada um com uma certa chance de ocorrer.
- Modelo estocástico: construto matemático que simula os resultados possíveis de um ensaio em um cenário estocástico.